On the number of edges of separated multigraphs

被引:0
作者
Fox, Jacob [1 ]
Pach, Janos [2 ]
Suk, Andrew [3 ]
机构
[1] Stanford Univ, Dept Math, Stanford, CA USA
[2] Renyi Inst, Budapest, Hungary
[3] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
基金
奥地利科学基金会; 美国国家科学基金会;
关键词
crossing lemma; multigraph; topological graph;
D O I
10.1002/jgt.23030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the number of edges of a multigraph G with n vertices is at most O(n(2)log n), provided that any two edges cross at most once, parallel edges are noncrossing, and the lens enclosed by every pair of parallel edges in G contains at least one vertex. As a consequence, we prove the following extension of the Crossing Lemma of Ajtai, Chvatal, Newborn, Szemeredi, and Leighton, if G has e >= 4n edges, in any drawing of G with the above property, the number of crossings is O( e) n log(e n)3 2 /. This answers a question of Kaufmann et al. and is tight up to the logarithmic factor.
引用
收藏
页码:210 / 217
页数:8
相关论文
共 50 条
  • [21] A sublinear bound on the chromatic index of multigraphs
    Plantholt, M
    [J]. DISCRETE MATHEMATICS, 1999, 202 (1-3) : 201 - 213
  • [22] Optimal 1-planar multigraphs
    Sone, Katsuya
    Suzuki, Yusuke
    [J]. DISCRETE MATHEMATICS, 2023, 346 (10)
  • [23] Sampling strategies for conditional inference on multigraphs
    Eisinger, Robert D.
    Chen, Yuguo
    [J]. STATISTICS AND ITS INTERFACE, 2018, 11 (04) : 649 - 656
  • [24] Tournaments associated with multigraphs and a theorem of Hakimi
    Brualdi, Richard A.
    Fritscher, Eliseu
    [J]. DISCRETE MATHEMATICS, 2015, 338 (02) : 229 - 235
  • [25] Quantum symmetry in multigraphs (part II)
    Goswami, Debashish
    Hossain, Sk Asfaq
    [J]. INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2024,
  • [26] TWIN-WIDTH OF SUBDIVISIONS OF MULTIGRAPHS
    Ahn, Jungho
    Chakraborti, Debsoumya
    Hendrey, Kevin
    Oum, Sang-Il
    [J]. SIAM Journal on Discrete Mathematics, 2025, 39 (02) : 783 - 833
  • [27] On abelian l-towers of multigraphs
    Vallieres, Daniel
    [J]. ANNALES MATHEMATIQUES DU QUEBEC, 2021, 45 (02): : 433 - 452
  • [28] Layer-Centered Approach for Multigraphs Visualization
    Redondo, Denis
    Sallaberry, Arnaud
    Ienco, Dino
    Zaidi, Faraz
    Poncelet, Pascal
    [J]. 2015 19TH INTERNATIONAL CONFERENCE ON INFORMATION VISUALISATION IV 2015, 2015, : 50 - 55
  • [29] Blocking Trails for f-factors of Multigraphs
    Harold N. Gabow
    [J]. Algorithmica, 2023, 85 : 3168 - 3213
  • [30] Lower bounds on the maximum genus of loopless multigraphs
    Li D.
    Liu Y.
    [J]. Applied Mathematics-A Journal of Chinese Universities, 2000, 15 (4) : 359 - 368