On the number of edges of separated multigraphs

被引:0
|
作者
Fox, Jacob [1 ]
Pach, Janos [2 ]
Suk, Andrew [3 ]
机构
[1] Stanford Univ, Dept Math, Stanford, CA USA
[2] Renyi Inst, Budapest, Hungary
[3] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
基金
美国国家科学基金会; 奥地利科学基金会;
关键词
crossing lemma; multigraph; topological graph;
D O I
10.1002/jgt.23030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the number of edges of a multigraph G with n vertices is at most O(n(2)log n), provided that any two edges cross at most once, parallel edges are noncrossing, and the lens enclosed by every pair of parallel edges in G contains at least one vertex. As a consequence, we prove the following extension of the Crossing Lemma of Ajtai, Chvatal, Newborn, Szemeredi, and Leighton, if G has e >= 4n edges, in any drawing of G with the above property, the number of crossings is O( e) n log(e n)3 2 /. This answers a question of Kaufmann et al. and is tight up to the logarithmic factor.
引用
收藏
页码:210 / 217
页数:8
相关论文
共 50 条
  • [1] VERTEX COLOURINGS OF MULTIGRAPHS WITH FORBIDDANCES ON EDGES
    Glebov, A. N.
    Pavlov, I. A.
    Khadaev, K. A.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2020, 17 : 637 - 646
  • [2] COUNTING THE NUMBER OF MINIMUM CUTS IN UNDIRECTED MULTIGRAPHS
    NAGAMOCHI, H
    SUN, Z
    IBARAKI, T
    IEEE TRANSACTIONS ON RELIABILITY, 1991, 40 (05) : 610 - 614
  • [3] DECOMPOSITION OF COMPLETE BIPARTITE MULTIGRAPHS INTO PATHS AND CYCLES HAVING k EDGES
    Jeevadoss, Shanmugasundaram
    Muthusamy, Appu
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2015, 35 (04) : 715 - 731
  • [4] Sharp lower bounds for the number of maximum matchings in bipartite multigraphs
    Kostochka, Alexandr V.
    West, Douglas B.
    Xiang, Zimu
    JOURNAL OF GRAPH THEORY, 2024, 106 (03) : 525 - 555
  • [5] Parsimonious multigraphs
    Will, TG
    Hulett, H
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2004, 18 (02) : 241 - 245
  • [6] ANCHORED HYPERSPACES AND MULTIGRAPHS
    Reyna, Gerardo
    Romero-Valencia, Jesus
    Espinobarros, Ivan
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2019, 14 (01) : 150 - 166
  • [7] A Crossing Lemma for Multigraphs
    János Pach
    Géza Tóth
    Discrete & Computational Geometry, 2020, 63 : 918 - 933
  • [8] Group colorability of multigraphs
    Li, Hao
    Lai, Hong-Jian
    DISCRETE MATHEMATICS, 2013, 313 (01) : 101 - 104
  • [9] Density of Gallai multigraphs
    Magnant, Colton
    ELECTRONIC JOURNAL OF COMBINATORICS, 2015, 22 (01)
  • [10] JUMPS AND NONJUMPS IN MULTIGRAPHS
    Horn, Paul
    La Fleur, Steve
    Roedl, Vojtech
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2013, 27 (02) : 1040 - 1054