Deep Learning-Based Automatic Detection of Aortic Valve on Echocardiographic Images

被引:0
|
作者
Cakir, Mervenur [1 ]
Ekinci, Murat [2 ]
Kablan, Elif Baykal [1 ]
Sahin, Mursel [3 ]
机构
[1] Karadeniz Tech Univ, Yazilim Muhendisligi Bolumu, Trabzon, Turkiye
[2] Karadeniz Tech Univ, Bilgisayar Muhendisligi Bolumu, Trabzon, Turkiye
[3] Karadeniz Tech Univ, Kardiyol Bolumu, Trabzon, Turkiye
来源
2023 31ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU | 2023年
关键词
aortic stenosis; aortic valve detection; echocardiography; YOLOv5; deep learning; object detection;
D O I
10.1109/SIU59756.2023.10223928
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Aortic stenosis is the narrowing of the aortic valve due to structural damage. Common cause is the formation of calcification in the aortic valve, which occurs with age. An expert cardiologist generates an approximate score for the volume and severity of calcification by focusing on the aortic regions of interest in echocardiography images for the diagnosis of aortic stenosis. In this study, a novel dataset consisting of echocardiography images of the aortic valve was created. The regions of interest in the aortic valve were manually annotated in the training and validation datasets, and the images in the training dataset were used to train the four sub-versions of the YOLOv5 model. The validation dataset was used to evaluate the performance of the network during the training process, and the test dataset were used to evaluate the performance of the trained models. The highest mAP value of 99.5% was achieved with the YOLOv5-x model at an IoU threshold of 0.9. Additionally, the precision value was 99.9% and the recall value was 97.5%. The models demonstrated the ability to detect aortic valves very close to the expert cardiologist's accurately labeled ground-truth, even in aortic valves of different scales and orientations.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Deep Learning-Based Automatic Segmentation of the Proximal Femur from MR Images
    Zeng, Guodong
    Zheng, Guoyan
    INTELLIGENT ORTHOPAEDICS: ARTIFICIAL INTELLIGENCE AND SMART IMAGE-GUIDED TECHNOLOGY FOR ORTHOPAEDICS, 2018, 1093 : 73 - 79
  • [22] Deep learning-based automatic annotation and online classification of remote multimedia images
    Sucheng Kang
    Multimedia Tools and Applications, 2022, 81 : 36239 - 36255
  • [23] Deep Learning-Based Defect Detection Framework for Ultra High Resolution Images of Tunnels
    Lee, Kisu
    Lee, Sanghyo
    Kim, Ha Young
    SUSTAINABILITY, 2023, 15 (02)
  • [24] Deep Learning-Based Automatic Detection and Evaluation on Concrete Surface Bugholes
    Wei, Fujia
    Shen, Liyin
    Xiang, Yuanming
    Zhang, Xingjie
    Tang, Yu
    Tan, Qian
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2022, 131 (02): : 619 - 637
  • [25] Deep Learning-Based Automatic Defect Detection Method for Sewer Pipelines
    Shen, Dongming
    Liu, Xiang
    Shang, Yanfeng
    Tang, Xian
    SUSTAINABILITY, 2023, 15 (12)
  • [26] Deep Learning-Based Regression and Classification for Automatic Landmark Localization in Medical Images
    Noothout, Julia M. H.
    de Vos, Bob D.
    Wolterink, Jelmer M.
    Postma, Elbrich M.
    Smeets, Paul A. M.
    Takx, Richard A. P.
    Leiner, Tim
    Viergever, Max A.
    Isgum, Ivana
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (12) : 4011 - 4022
  • [27] Automatic deep learning-based pleural effusion segmentation in lung ultrasound images
    Damjan Vukovic
    Andrew Wang
    Maria Antico
    Marian Steffens
    Igor Ruvinov
    Ruud JG van Sloun
    David Canty
    Alistair Royse
    Colin Royse
    Kavi Haji
    Jason Dowling
    Girija Chetty
    Davide Fontanarosa
    BMC Medical Informatics and Decision Making, 23
  • [28] Explainable artificial intelligence in deep learning-based detection of aortic elongation on chest X-ray images
    Ribeiro, Estela
    Cardenas, Diego A. C.
    Dias, Felipe M.
    Krieger, Jose E.
    Gutierrez, Marco A.
    EUROPEAN HEART JOURNAL - DIGITAL HEALTH, 2024, 5 (05): : 524 - 534
  • [29] Deep Learning-Based Speed Breaker Detection
    VT M.A.
    Omar M.
    Ahamad J.
    Ahmad K.
    Khan M.A.
    SN Computer Science, 5 (5)
  • [30] Deep Learning-Based Data Forgery Detection in Automatic Generation Control
    Zhang, Fengli
    Li, Qinghua
    2017 IEEE CONFERENCE ON COMMUNICATIONS AND NETWORK SECURITY (CNS), 2017, : 400 - 404