Application of Convolutional Neural Networks to Emotion Recognition for Robotic Arm Manipulation

被引:0
|
作者
Fuertes, Walter [1 ]
Hunter, Karen [1 ]
Benitez, Diego S. [1 ]
Perez, Noel [1 ]
Grijalva, Felipe [1 ]
Baldeon-Calisto, Maria [2 ]
机构
[1] Univ San Francisco Quito USFQ, Colegio Ciencias & Ingn El Politecn, Quito 170157, Ecuador
[2] Univ San Francisco Quito USFQ, Ingn Ind, CATENA SFQ, Quito 170157, Ecuador
来源
2023 IEEE COLOMBIAN CONFERENCE ON APPLICATIONS OF COMPUTATIONAL INTELLIGENCE, COLCACI | 2023年
关键词
emotion recognition; convolution neural networks; robotic arm control; EYES;
D O I
10.1109/COLCACI59285.2023.10225880
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents the development of a system that operates a robotic arm to deliver an object based on the facial expression of a human standing in front of the robot, demonstrating real-time emotion recognition for physical Human-Robot Interaction. To achieve this, a convolutional neural network-based model was developed to identify emotions in real time. The robotic arm operation was implemented using an embedded NVidia Jetson Nano computer, a web camera, and OpenCV, ROS, and TensorFlow libraries. Using a 26.6k face photos data set from the emotion detection database, the built emotion detection model demonstrated an accuracy of 93.5% and an error of 6.5% during training and validation. The final real-time prototype had a testing accuracy of 94% with an error of 6%. This proof-of-concept shows that in the near future more advanced applications that harness user emotions may also be built.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Emotion Recognition System from Speech and Visual Information based on Convolutional Neural Networks
    Ristea, Nicolae-Catalin
    Dutu, Liviu Cristian
    Radoi, Anamaria
    2019 10TH INTERNATIONAL CONFERENCE ON SPEECH TECHNOLOGY AND HUMAN-COMPUTER DIALOGUE (SPED), 2019,
  • [22] Speech Emotion Recognition and Deep Learning: An Extensive Validation Using Convolutional Neural Networks
    Ri, Francesco Ardan Dal
    Ciardi, Fabio Cifariello
    Conci, Nicola
    IEEE ACCESS, 2023, 11 : 116638 - 116649
  • [23] Enhancing Emotion Recognition through Federated Learning: A Multimodal Approach with Convolutional Neural Networks
    Simic, Nikola
    Suzic, Sinisa
    Milosevic, Nemanja
    Stanojev, Vuk
    Nosek, Tijana
    Popovic, Branislav
    Bajovic, Dragana
    APPLIED SCIENCES-BASEL, 2024, 14 (04):
  • [24] EEG emotion recognition using fusion model of graph convolutional neural networks and LSTM
    Yin, Yongqiang
    Zheng, Xiangwei
    Hu, Bin
    Zhang, Yuang
    Cui, Xinchun
    APPLIED SOFT COMPUTING, 2021, 100
  • [25] Causal Graph Convolutional Neural Network for Emotion Recognition
    Kong, Wanzeng
    Qiu, Min
    Li, Menghang
    Jin, Xuanyu
    Zhu, Li
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2023, 15 (04) : 1686 - 1693
  • [26] Bimodal Emotion Recognition Based on Convolutional Neural Network
    Chen, Mengmeng
    Jiang, Lifen
    Ma, Chunmei
    Sun, Huazhi
    ICMLC 2019: 2019 11TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COMPUTING, 2019, : 178 - 181
  • [27] Cross-dataset emotion recognition from facial expressions through convolutional neural networks
    Dias, William
    Andalo, Fernanda
    Padilha, Rafael
    Bertocco, Gabriel
    Almeida, Waldir
    Costa, Paula
    Rocha, Anderson
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2022, 82
  • [28] EEG-Based Emotion Recognition using 3D Convolutional Neural Networks
    Salama, Elham S.
    El-Khoribi, Reda A.
    Shoman, Mahmoud E.
    Shalaby, Mohamed A. Wahby
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2018, 9 (08) : 329 - 337
  • [29] Emotion recognition using heterogeneous convolutional neural networks combined with multimodal factorized bilinear pooling
    Zhang, Yong
    Cheng, Cheng
    Wang, Shuai
    Xia, Tianqi
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 77
  • [30] EEG Emotion Recognition Using Dynamical Graph Convolutional Neural Networks and Broad Learning System
    Wang, Xue-han
    Zhang, Tong
    Xu, Xiang-min
    Chen, Long
    Xing, Xiao-fen
    Chen, C. L. Philip
    PROCEEDINGS 2018 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2018, : 1240 - 1244