Experimental and numerical studies of thermal transport in a latent heat storage unit with a plate fin and a flat heat pipe

被引:17
作者
Wang, Zeyu [1 ,2 ]
Diao, Yanhua [1 ]
Zhao, Yaohua [1 ,3 ]
Chen, Chuanqi [1 ]
Wang, Tengyue [1 ]
Liang, Lin [1 ]
机构
[1] Beijing Univ Technol, Beijing Key Lab Green Built Environm & Efficient, Beijing 100124, Peoples R China
[2] China Nucl Power Engn Co Ltd, Beijing 100840, Peoples R China
[3] Zibo Bioenergy Sci & Technol Co Ltd, Zibo 255200, Shandong, Peoples R China
关键词
Phase change material; Heat pipe; Melting; Heat transfer enhancement; Plate fin; Latent heat storage; SHELL-AND-TUBE; PHASE-CHANGE MATERIAL; ENERGY-STORAGE; PERFORMANCE ENHANCEMENT; RECTANGULAR ENCLOSURES; DISCHARGING PROCESS; SYSTEM; SOLIDIFICATION; DESIGN; OPTIMIZATION;
D O I
10.1016/j.energy.2023.127464
中图分类号
O414.1 [热力学];
学科分类号
摘要
Heat pipes with plate fins, which are a simple and effective technique for heat transfer enhancement, are extremely important for latent heat storage. However, the effect of fin geometry on the solid-liquid phase transition is not fully understood, and correlations for describing the melting heat transfer process are rarely proposed. Here, experiments and numerical simulations were conducted on a reduced-scale model of a latent heat storage unit that used flat heat pipes and plate fins for charging. The evolution of the temperature pattern and solid-liquid interface of the phase change material during melting and the performance of the flat heat pipe with and without fins were experimentally investigated in terms of heat transfer enhancement. Then, the latent heat storage unit was numerically simulated based on the enthalpy-porosity model and the effective thermal conductivity method. The effects of the fin structure parameters and the input heat on the melting heat transfer mechanism of the phase change material were also studied. Finally, the overall results were generalized via multivariate nonlinear fitting, and the correlations of melting and heat transfer of the phase change material with plate fins were obtained.This research contributes to the study of latent heat storage by establishing the correlations of the melting process and heat transfer in confined spaces of plate fins using the Rayleigh number, Fourier number, Stefan number, fin length-width ratio, height-width ratio, and filling ratio of the fin.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Effect of graphite fin on heat transfer enhancement of rectangular shell and tube latent heat storage
    Nguyen, Thanh Phuong
    Ramadan, Zaher
    Hong, Sung Joo
    Park, Chan Woo
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2022, 194
  • [22] Internal and external fin heat transfer enhancement technique for latent heat thermal energy storage in triplex tube heat exchangers
    Al-Abidi, Abduljalil A.
    Mat, Sohif
    Sopian, K.
    Sulaiman, M. Y.
    Mohammad, Abdulrahman Th.
    APPLIED THERMAL ENGINEERING, 2013, 53 (01) : 147 - 156
  • [23] A review of fin application for latent heat thermal energy storage enhancement
    Low, Zheng Hua
    Qin, Zhen
    Duan, Fei
    JOURNAL OF ENERGY STORAGE, 2024, 85
  • [24] Visualization experiment and numerical study of latent heat storage unit using micro-heat pipe arrays: Melting process
    Wang, Zeyu
    Diao, Yanhua
    Zhao, Yaohua
    Chen, Chuanqi
    Wang, Tengyue
    Liang, Lin
    ENERGY, 2022, 246
  • [25] EXPERIMENTAL AND NUMERICAL STUDY OF A LATENT HEAT THERMAL ENERGY STORAGE UNIT ENHANCED BY FINS
    Hockins, Addison
    Moretti, Samantha
    Mahdavi, Mahboobe
    Tiari, Saeed
    PROCEEDINGS OF THE ASME 2020 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, IMECE2020, VOL 8, 2020,
  • [26] Topology optimization for heat transfer enhancement in Latent Heat Thermal Energy Storage
    Pizzolato, Alberto
    Sharma, Ashesh
    Maute, Kurt
    Sciacovelli, Adriano
    Verda, Vittorio
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 113 : 875 - 888
  • [27] Numerical study on charging characteristics of heat pipe-assisted cylindrical capsule for enhancing latent thermal energy storage
    Yang, Hai
    Song, Jingge
    He, Boshu
    Ding, Guangchao
    SOLAR ENERGY, 2019, 190 : 147 - 155
  • [28] Energy and exergy analyses of latent heat storage unit positioned at different orientations - An experimental study
    Kalapala, Lokesh
    Devanuri, Jaya Krishna
    ENERGY, 2020, 194
  • [29] Numerical Simulation of Heat Pipe-Assisted Latent Heat Thermal Energy Storage Unit for Dish-Stirling Systems
    Shabgard, Hamidreza
    Faghri, Amir
    Bergman, Theodore L.
    Andraka, Charles E.
    JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2014, 136 (02):
  • [30] Numerical investigation and experimental validation of the thermal performance enhancement of a compact finned-tube heat exchanger for efficient latent heat thermal energy storage
    Amagour, Mohamed El Habib
    Bennajah, Mounir
    Rachek, Adil
    JOURNAL OF CLEANER PRODUCTION, 2021, 280