Modeling transit time distributions in microvascular networks

被引:2
作者
Karst, Nathaniel J. [1 ]
Geddes, John B. [2 ]
机构
[1] Babson Coll, Wellesley, MA 02457 USA
[2] Olin Coll Engn, Needham, MA 02492 USA
关键词
Microvascular networks; Transit time distributions; BLOOD-FLOW; CELL DISTRIBUTION; OSCILLATIONS; HETEROGENEITY; MORPHOMETRY;
D O I
10.1016/j.jtbi.2023.111584
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The time a red blood cell (RBC) spends in the microvasculature is of prime importance for a number of physiological processes. In this work, we present a methodology for computing an approximation of the so-called transit time distribution (TTD), i.e., the probabilistic description of how long a RBC will reside within the network. As a proof of concept, we apply this methodology to three flavors of the mesh networks. We show that each network type supports multiple distinct steady-state configurations and we present tools for analyzing the associated collection of TTDs, ranging from standard measures like mean capillary transit time (MCTT) and capillary transit time heterogeneity (CTTH) to novel metrics.
引用
收藏
页数:7
相关论文
共 30 条
  • [1] Ahuja R. K., 1993, NETWORK FLOWS THEORY
  • [2] Structural Features of Microvascular Networks Trigger Blood Flow Oscillations
    Ben-Ami, Y.
    Atkinson, G. W.
    Pitt-Francis, J. M.
    Maini, P. K.
    Byrne, H. M.
    [J]. BULLETIN OF MATHEMATICAL BIOLOGY, 2022, 84 (08)
  • [3] Oscillations in a simple microvascular network
    Carr, RT
    Geddes, JB
    Wu, F
    [J]. ANNALS OF BIOMEDICAL ENGINEERING, 2005, 33 (06) : 764 - 771
  • [4] Nonlinear dynamics of microvascular blood flow
    Carr, RT
    Lacoin, M
    [J]. ANNALS OF BIOMEDICAL ENGINEERING, 2000, 28 (06) : 641 - 652
  • [5] Chiba A, 1998, RES COMMUN MOL PATH, V100, P65
  • [6] Self-sustained Oscillations in Blood Flow Through a Honeycomb Capillary Network
    Davis, J. M.
    Pozrikidis, C.
    [J]. BULLETIN OF MATHEMATICAL BIOLOGY, 2014, 76 (09) : 2217 - 2237
  • [7] Numerical Simulation of Unsteady Blood Flow through Capillary Networks
    Davis, J. M.
    Pozrikidis, C.
    [J]. BULLETIN OF MATHEMATICAL BIOLOGY, 2011, 73 (08) : 1857 - 1880
  • [8] On the Linear Stability of Blood Flow Through Model Capillary Networks
    Davis, Jeffrey M.
    [J]. BULLETIN OF MATHEMATICAL BIOLOGY, 2014, 76 (12) : 2985 - 3015
  • [9] Dunlop SA, 1997, J EXP BIOL, V200, P2479
  • [10] Multiple equilibrium states in a micro-vascular network
    Gardner, David
    Li, Yiyang
    Small, Benjamin
    Geddes, John B.
    Carr, Russell T.
    [J]. MATHEMATICAL BIOSCIENCES, 2010, 227 (02) : 117 - 124