The relaxed MGHSS-like method for absolute value equations

被引:0
作者
Shao, Xin-Hui [1 ]
Yang, Shao-Xiong [1 ]
机构
[1] Northeastern Univ, Coll Sci, Dept Math, Shenyang 110819, Peoples R China
关键词
Absolute value equations; Matrix splitting; Hermitian matrix; PHSS-like iteration; RMGHSS-like iteration; GENERALIZED NEWTON METHOD; MONOTONE CONVERGENCE; ITERATION METHODS; SYSTEMS;
D O I
10.2298/FIL2326845S
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on the matrix splitting techniques and the ideas of the GPHSS-like method, we proposed the relaxed modified generalized HSS-like method (RMGHSS-like), which is more efficient and more robust than the RPHSS-like, the MBAS, the NI and the NHSS-like methods for the absolute value equation. Furthermore, the RMGHSS-like method is the general form of the relaxed PHSS-like method. The convergence of the RMGHSS-like iterative method is proved by theoretical analysis, and the relationships between the parameters are rigorously discussed when the coefficient matrix E is a Hermitian positive definite matrix under the minimum spectral radius. Numerical experiments had been given to recognize the effectiveness of the RMGHSS-like method.
引用
收藏
页码:8845 / 8865
页数:21
相关论文
共 50 条
  • [41] A dynamic model to solve the absolute value equations
    Mansoori, Amin
    Erfanian, Majid
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 333 : 28 - 35
  • [42] Tensor absolute value equations
    Du, Shouqiang
    Zhang, Liping
    Chen, Chiyu
    Qi, Liqun
    [J]. SCIENCE CHINA-MATHEMATICS, 2018, 61 (09) : 1695 - 1710
  • [43] A note on absolute value equations
    Sheng-Long Hu
    Zheng-Hai Huang
    [J]. Optimization Letters, 2010, 4 : 417 - 424
  • [44] ON GENERALIZED ABSOLUTE VALUE EQUATIONS
    Noor, M. A.
    Noor, K. I.
    Batool, S.
    [J]. UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2018, 80 (04): : 63 - 70
  • [45] A note on absolute value equations
    Hu, Sheng-Long
    Huang, Zheng-Hai
    [J]. OPTIMIZATION LETTERS, 2010, 4 (03) : 417 - 424
  • [46] Tensor absolute value equations
    Shouqiang Du
    Liping Zhang
    Chiyu Chen
    Liqun Qi
    [J]. ScienceChina(Mathematics), 2018, 61 (09) : 157 - 172
  • [47] Tensor absolute value equations
    Shouqiang Du
    Liping Zhang
    Chiyu Chen
    Liqun Qi
    [J]. Science China Mathematics, 2018, 61 : 1695 - 1710
  • [48] Comments on finite termination of the generalized Newton method for absolute value equations
    Guo, Chun-Hua
    [J]. OPTIMIZATION LETTERS, 2024, : 1017 - 1026
  • [49] An efficient method for optimal correcting of absolute value equations by minimal changes in the right hand side
    Ketabchi, Saeed
    Moosaei, Hossein
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (06) : 1882 - 1885
  • [50] Two New Iteration Methods with Optimal Parameters for Solving Absolute Value Equations
    Ali R.
    Pan K.
    Ali A.
    [J]. International Journal of Applied and Computational Mathematics, 2022, 8 (3)