An Efficient Ensemble Approach for Alzheimer's Disease Detection Using an Adaptive Synthetic Technique and Deep Learning

被引:22
|
作者
Mujahid, Muhammad [1 ]
Rehman, Amjad [2 ]
Alam, Teg [3 ]
Alamri, Faten S. [4 ]
Fati, Suliman Mohamed [2 ]
Saba, Tanzila [2 ]
机构
[1] Khwaja Fareed Univ Engn & Informat Technol, Dept Comp Sci, Rahim Yar Khan 64200, Pakistan
[2] Prince Sultan Univ, Artificial Intelligence & Data Analyt Lab CCIS, Riyadh 11586, Saudi Arabia
[3] Prince Sattam bin Abdulaziz Univ, Coll Engn, Dept Ind Engn, Al Kharj 11942, Saudi Arabia
[4] Princess Nourah Bint Abdulrahman Univ, Coll Sci, Dept Math Sci, POB 84428, Riyadh 11671, Saudi Arabia
关键词
Alzheimer's disease; ADASYN; deep learning; medical MRI brain images; optimized ensemble model; CONVOLUTIONAL NEURAL-NETWORKS; MILD COGNITIVE IMPAIRMENT; CLASSIFICATION; DIAGNOSIS;
D O I
10.3390/diagnostics13152489
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Alzheimer's disease is an incurable neurological disorder that leads to a gradual decline in cognitive abilities, but early detection can significantly mitigate symptoms. The automatic diagnosis of Alzheimer's disease is more important due to the shortage of expert medical staff, because it reduces the burden on medical staff and enhances the results of diagnosis. A detailed analysis of specific brain disorder tissues is required to accurately diagnose the disease via segmented magnetic resonance imaging (MRI). Several studies have used the traditional machine-learning approaches to diagnose the disease from MRI, but manual extracted features are more complex, time-consuming, and require a huge amount of involvement from expert medical staff. The traditional approach does not provide an accurate diagnosis. Deep learning has automatic extraction features and optimizes the training process. The Magnetic Resonance Imaging (MRI) Alzheimer's disease dataset consists of four classes: mild demented (896 images), moderate demented (64 images), non-demented (3200 images), and very mild demented (2240 images). The dataset is highly imbalanced. Therefore, we used the adaptive synthetic oversampling technique to address this issue. After applying this technique, the dataset was balanced. The ensemble of VGG16 and EfficientNet was used to detect Alzheimer's disease on both imbalanced and balanced datasets to validate the performance of the models. The proposed method combined the predictions of multiple models to make an ensemble model that learned complex and nuanced patterns from the data. The input and output of both models were concatenated to make an ensemble model and then added to other layers to make a more robust model. In this study, we proposed an ensemble of EfficientNet-B2 and VGG-16 to diagnose the disease at an early stage with the highest accuracy. Experiments were performed on two publicly available datasets. The experimental results showed that the proposed method achieved 97.35% accuracy and 99.64% AUC for multiclass datasets and 97.09% accuracy and 99.59% AUC for binary-class datasets. We evaluated that the proposed method was extremely efficient and provided superior performance on both datasets as compared to previous methods.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Early Diagnosis of Alzheimer's Disease by Ensemble Deep Learning Using FDG-PET
    Zheng, Chuanchuan
    Xia, Yong
    Chen, Yuanyuan
    Yin, Xiaoxia
    Zhang, Yanchun
    INTELLIGENCE SCIENCE AND BIG DATA ENGINEERING, 2018, 11266 : 614 - 622
  • [22] A Novel Approach Towards Early Detection of Alzheimer's Disease Using Deep Learning on Magnetic Resonance Images
    Yadav, Kushpal Singh
    Miyapuram, Krishna Prasad
    BRAIN INFORMATICS, BI 2021, 2021, 12960 : 486 - 495
  • [23] Efficient Deep Learning Algorithm for Alzheimer's Disease Diagnosis using Retinal Images
    Kim, Do Young
    Lim, Young Jun
    Park, Joon Hyeon
    Sunwoo, Myung Hoon
    2022 IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE CIRCUITS AND SYSTEMS (AICAS 2022): INTELLIGENT TECHNOLOGY IN THE POST-PANDEMIC ERA, 2022, : 254 - 257
  • [24] Automated MRI-Based Deep Learning Model for Detection of Alzheimer's Disease Process
    Feng, Wei
    Van Halm-Lutterodt, Nicholas
    Tang, Hao
    Mecum, Andrew
    Mesregah, Mohamed Kamal
    Ma, Yuan
    Li, Haibin
    Zhang, Feng
    Wu, Zhiyuan
    Yao, Erlin
    Guo, Xiuhua
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2020, 30 (06)
  • [25] A Survey of Deep Learning for Alzheimer's Disease
    Zhou, Qinghua
    Wang, Jiaji
    Yu, Xiang
    Wang, Shuihua
    Zhang, Yudong
    MACHINE LEARNING AND KNOWLEDGE EXTRACTION, 2023, 5 (02): : 611 - 668
  • [26] Classification of Alzheimer's Disease Using Ensemble of Deep Neural Networks Trained Through Transfer Learning
    Tanveer, M.
    Rashid, A. H.
    Ganaie, M. A.
    Reza, M.
    Razzak, Imran
    Hua, Kai-Lung
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (04) : 1453 - 1463
  • [27] A review of the application of deep learning in the detection of Alzheimer's disease
    Gao S.
    Lima D.
    International Journal of Cognitive Computing in Engineering, 2022, 3 : 1 - 8
  • [28] Automatic Detection of Alzheimer's Disease using Deep Learning Models and Neuro-Imaging: Current Trends and Future Perspectives
    Illakiya, T.
    Karthik, R.
    NEUROINFORMATICS, 2023, 21 (02) : 339 - 364
  • [29] Image-Based Early Detection of Alzheimer's Disease by Using Adaptive Structural Deep Learning
    Kamada, Shin
    Ichimura, Takumi
    Harada, Toshihide
    INTELLIGENT DECISION TECHNOLOGIES, KES-IDT 2021, 2021, 238 : 595 - 605
  • [30] Machine and deep learning approaches for alzheimer disease detection using magnetic resonance images: An updated review
    Menagadevi, M.
    Devaraj, Somasundaram
    Madian, Nirmala
    Thiyagarajan, D.
    MEASUREMENT, 2024, 226