Machine learning instructed microfluidic synthesis of curcumin-loaded liposomes

被引:12
作者
Di Francesco, Valentina [1 ]
Boso, Daniela P. [2 ]
Moore, Thomas L. [1 ]
Schrefler, Bernhard A. [2 ,3 ]
Decuzzi, Paolo [1 ]
机构
[1] Ist Italiano Tecnol, Lab Nanotechnol Precis Med, Via Morego 30, I-16163 Genoa, Italy
[2] Univ Padua, Dept Civil Environm & Architectural Engn, Via Marzolo 9, I-35131 Padua, Italy
[3] Tech Univ Munich, Inst Adv Studies, Lichtenbergstr 2, D-85748 Garching, Germany
关键词
Nanomedicine; Drug delivery; Microfluidics; Artificial neural network; Artificial Intelligence; PARTICLE-SIZE; NANOPARTICLES; FORMULATION; SHAPE;
D O I
10.1007/s10544-023-00671-1
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The association of machine learning (ML) tools with the synthesis of nanoparticles has the potential to streamline the development of more efficient and effective nanomedicines. The continuous-flow synthesis of nanoparticles via microfluidics represents an ideal playground for ML tools, where multiple engineering parameters - flow rates and mixing configurations, type and concentrations of the reagents - contribute in a non-trivial fashion to determine the resultant morphological and pharmacological attributes of nanomedicines. Here we present the application of ML models towards the microfluidic-based synthesis of liposomes loaded with a model hydrophobic therapeutic agent, curcumin. After generating over 200 different liposome configurations by systematically modulating flow rates, lipid concentrations, organic:water mixing volume ratios, support-vector machine models and feed-forward artificial neural networks were trained to predict, respectively, the liposome dispersity/stability and size. This work presents an initial step towards the application and cultivation of ML models to instruct the microfluidic formulation of nanoparticles.
引用
收藏
页数:13
相关论文
共 42 条
  • [1] Determination of factors controlling the particle size in nanoemulsions using Artificial Neural Networks
    Amani, Amir
    York, Peter
    Chrystyn, Henry
    Clark, Brian J.
    Do, Duong Q.
    [J]. EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2008, 35 (1-2) : 42 - 51
  • [2] Preparation of cetyl palmitate-based PEGylated solid lipid nanoparticles by microfluidic technique
    Arduino, Ilaria
    Liu, Zehua
    Rahikkala, Antti
    Figueiredo, Patricia
    Correia, Alexandra
    Cutrignelli, Annalisa
    Denora, Nunzio
    Santos, Helder A.
    [J]. ACTA BIOMATERIALIA, 2021, 121 : 566 - 578
  • [3] Preparation of biodegradable nanoparticles of tri-block PLA-PEG-PLA copolymer and determination of factors controlling the particle size using artificial neural network
    Asadi, H.
    Rostamizadeh, K.
    Salari, D.
    Hamidi, M.
    [J]. JOURNAL OF MICROENCAPSULATION, 2011, 28 (05) : 406 - 416
  • [4] Nanoparticle dispersity in toxicology
    Baalousha, Mohammed
    Lead, Jamie R.
    [J]. NATURE NANOTECHNOLOGY, 2013, 8 (05) : 308 - 309
  • [5] Machine learning directed drug formulation development
    Bannigan, Pauric
    Aldeghi, Matteo
    Bao, Zeqing
    Hase, Florian
    Aspuru-Guzik, Alan
    Allen, Christine
    [J]. ADVANCED DRUG DELIVERY REVIEWS, 2021, 175
  • [6] Hyaluronic Acid Surface Modified Liposomes Prepared via Orthogonal Aminoxy Coupling: Synthesis of Nontoxic Aminoxylipids Based on Symmetrically α-Branched Fatty Acids, Preparation of Liposomes by Microfluidic Mixing, and Targeting to Cancer Cells Expressing CD44
    Bartheldyova, Eliska
    Effenberg, Roman
    Masek, Josef
    Prochazka, Lubomir
    Knotigova, Pavlina Turanek
    Kulich, Pavel
    Hubatka, Frantisek
    Velinska, Kamila
    Zelnickova, Jaroslava
    Zouharova, Darina
    Fojtikova, Martina
    Hrebik, Dominik
    Plevka, Pavel
    Mikulik, Robert
    Miller, Andrew D.
    Macaulay, Stuart
    Zyka, Daniel
    Droz, Ladislav
    Raska, Milan
    Ledvina, Miroslav
    Turanek, Jaroslav
    [J]. BIOCONJUGATE CHEMISTRY, 2018, 29 (07) : 2343 - 2356
  • [7] DLS and zeta potential - What they are and what they are not?
    Bhattacharjee, Sourav
    [J]. JOURNAL OF CONTROLLED RELEASE, 2016, 235 : 337 - 351
  • [8] Massively parallel pooled screening reveals genomic determinants of nanoparticle delivery
    Boehnke, Natalie
    Straehla, Joelle P.
    Safford, Hannah C.
    Kocak, Mustafa
    Rees, Matthew G.
    Ronan, Melissa
    Rosenberg, Danny
    Adelmann, Charles H.
    Chivukula, Raghu R.
    Nabar, Namita
    Berger, Adam G.
    Lamson, Nicholas G.
    Cheah, Jaime H.
    Li, Hojun
    Roth, Jennifer A.
    Koehler, Angela N.
    Hammond, Paula T.
    [J]. SCIENCE, 2022, 377 (6604) : 384 - +
  • [9] Drug delivery: Experiments, mathematical modelling and machine learning
    Boso, Daniela P.
    Di Mascolo, Daniele
    Santagiuliana, Raffaella
    Decuzzi, Paolo
    Schrefler, Bernhard A.
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 123 (123)
  • [10] Optimizing particle size for targeting diseased microvasculature: from experiments to artificial neural networks
    Boso, Daniela P.
    Lee, Sei-Young
    Ferrari, Mauro
    Schrefler, Bernhard A.
    Decuzzi, Paolo
    [J]. INTERNATIONAL JOURNAL OF NANOMEDICINE, 2011, 6 : 1517 - 1526