Nitrogen-doped microporous carbons as highly efficient adsorbents for CO2 and Hg(II) capture

被引:13
|
作者
Tang, Duanlian [1 ,2 ]
Lyu, Xiaoying [3 ]
Huang, Zhixian [1 ,2 ]
Xu, Renwei [3 ]
Chen, Jie [1 ,2 ]
Qiu, Ting [1 ,2 ,4 ]
机构
[1] Fuzhou Univ, Coll Chem Engn, Engn Res Ctr React Distillat, Fuzhou 350108, Peoples R China
[2] Qingyuan Innovat Lab, Quanzhou 362801, Peoples R China
[3] Sinochem Quanzhou Energy Technol Co Ltd, Quanzhou 362103, Peoples R China
[4] Fuzhou Univ Int Joint Lab Thermochem Convers Bioma, Fuzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Conjugated microporous polymers; N-doped porous carbon; CO2; capture; Mercury removal; POROUS CARBON; ADSORPTION CAPACITY; ORGANIC POLYMERS; REMOVAL; POROSITY; DIOXIDE; MERCURY; DESIGN; FIBERS;
D O I
10.1016/j.powtec.2023.118769
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Nitrogen-doped microporous carbon, which features a uniquely tunable porosity, exhibits promisingly high adsorption prospects in the greenhouse gas capture and water treatment. Herein, we propose a series of novel Ndoped microporous carbons (CMPAn-C1000), and precisely tune their porosities via a direct pyrolysis of rigid conjugated microporous poly(aniline)s (CMPAn, n = 1, 2, 3) with pore size difference in a molecular level, as achieved by simply tuning their linkers with varying sizes, planarity, and symmetry. The CMPA3-C1000, with a satisfactory amount of nitrogen heteroatoms, high SBET of similar to 800 m(2) g(-1), and large ultra-micropore volume of 0.25 cm(3) g(-1), has excellent CO2 capture ability (i.e., 5.1 mmol g(-1) at 273 K, 1 atm) and Hg(II) adsorption performance (i.e., Qe = 571 mg g(-1); k(2) = 0.0031 g mg(-1) min-1), respectively. CMPA3-C1000 might perform chemisorption towards Hg(II), according to calculations using density functional theory and experimental data; nitrogen atoms in porous carbon contributed to this excellent Hg(II) adsorption.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Efficient CO2 adsorption and mechanism on nitrogen-doped porous carbons
    Wang, Yanxia
    Hu, Xiude
    Guo, Tuo
    Hao, Jian
    Si, Chongdian
    Guo, Qingjie
    FRONTIERS OF CHEMICAL SCIENCE AND ENGINEERING, 2021, 15 (03) : 493 - 504
  • [2] Preparation and Characterization of Polyamides and Nitrogen-doped Carbons for Enhanced CO2 Capture
    Rehman, Adeela
    Park, Soo-Jin
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2017, 38 (11): : 1285 - 1292
  • [3] Nitrogen-doped porous carbons from polyacrylonitrile fiber as effective CO2 adsorbents
    Ma, Changdan
    Bai, Jiali
    Hu, Xin
    Jiang, Zhuohan
    Wang, Linlin
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2023, 125 : 533 - 543
  • [4] Comparative study of activation methods to design nitrogen-doped ultra-microporous carbons as efficient contenders for CO2 capture
    Rehman, Adeela
    Park, Soo-Jin
    CHEMICAL ENGINEERING JOURNAL, 2018, 352 : 539 - 548
  • [5] Imine-Linked Polymer-Derived Nitrogen-Doped Microporous Carbons with Excellent CO2 Capture Properties
    Wang, Jiacheng
    Senkovska, Irena
    Oschatz, Martin
    Lohe, Martin R.
    Borchardt, Lars
    Heerwig, Andreas
    Liu, Qian
    Kaskel, Stefan
    ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (08) : 3160 - 3167
  • [6] Enhanced CO2 Capture Capacity of Nitrogen-Doped Biomass-Derived Porous Carbons
    Chen, Jie
    Yang, Jie
    Hu, Gengshen
    Hu, Xin
    Li, Zhiming
    Shen, Siwei
    Radosz, Maciej
    Fan, Maohong
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2016, 4 (03): : 1439 - 1445
  • [7] Nitrogen-doped porous carbons derived from sustainable biomass via a facile post-treatment nitrogen doping strategy: Efficient CO2 capture and DRM
    Zhang, Xiaodi
    Xu, Ying
    Zhang, Guojie
    Wu, Chenlei
    Liu, Jun
    Lv, Yongkang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (58) : 24388 - 24397
  • [8] Nitrogen-doped porous carbons for highly selective CO2 capture from flue gases and natural gas upgrading
    Wang, Jun
    Krishna, Rajamani
    Yang, Jiangfeng
    Dandamudi, Kodanda Phani Raj
    Deng, Shuguang
    MATERIALS TODAY COMMUNICATIONS, 2015, 4 : 156 - 165
  • [9] Facile synthesis of nitrogen-doped porous carbons for CO2 capture and supercapacitors
    Wei, Huanming
    Qian, Wei
    Fu, Ning
    Chen, HaiJun
    Liu, Jinbao
    Jiang, Xinze
    Lan, Guoxian
    Lin, Hualin
    Han, Sheng
    JOURNAL OF MATERIALS SCIENCE, 2017, 52 (17) : 10308 - 10320
  • [10] Influence of the carbonization atmosphere on the development of highly microporous adsorbents tailored to CO2 capture
    Gomez-Delgado, Edward
    Nunell, Gisel, V
    Cukierman, Ana Lea
    Bonelli, Pablo R.
    JOURNAL OF THE ENERGY INSTITUTE, 2022, 102 : 184 - 189