Non-endoscopic Applications of Machine Learning in Gastric Cancer: A Systematic Review

被引:2
|
作者
Sy-Janairo, Marianne Linley L. [1 ]
Janairo, Jose Isagani B. [2 ]
机构
[1] St Lukes Med Ctr Global City, Inst Digest & Liver Dis, Taguig, Philippines
[2] De La Salle Univ, Dept Biol, 2401 Taft Ave, Manila 0922, Philippines
关键词
Machine learning; Gastric cancer; Artificial intelligence; LYMPH-NODE METASTASIS; LONG-TERM SURVIVAL; PREDICTION; CLASSIFICATION; BIOMARKERS; OUTCOMES; IMAGES; LEVEL; MODEL;
D O I
10.1007/s12029-023-00960-1
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
PurposeGastric cancer is an important health burden characterized by high prevalence and mortality rate. Upper gastrointestinal endoscopy coupled with biopsy is the primary means in which gastric cancer is diagnosed, and most of machine learning (ML) tools are developed in this area. This systematic review focuses on the applications of ML in gastric cancer that do not involve endoscopic image recognition.MethodsA systematic review of ML applications that do not involve endoscopy and are relevant to gastric cancer was performed in two databases and independently evaluated by the two authors. Information collected from the included studies are year of publication, ML algorithm, ML performance, specimen used to create the ML model, and clinical application of the model.ResultsFrom 791 screened studies, 63 studies were included in the systematic review. The included studies demonstrate that the non-endoscopic applications of ML can be divided into three main categories, which are diagnostics, predicting response to therapy, and prognosis prediction. Various specimen and algorithms were found to be used for these applications. Most of its clinical use includes histopathologic slide reading in the diagnosis of gastric cancer and a risk scoring system to determine the survival of patients or to determine the important variables that may affect the patient's prognosis.ConclusionThe systematic review suggests that there are numerous examples of non-endoscopic applications of ML that are relevant to gastric cancer. These studies have utilized various specimens, even non-conventional ones, thus showing great promise for the development of more non-invasive techniques. However, most of these studies are still in the early stages and will take more time before they can be clinically deployed. Moving forward, researchers in this field of study are encouraged to improve data curation and annotation, improve model interpretability, and compare model performance with the currently accepted standard in the clinical practice.
引用
收藏
页码:47 / 64
页数:18
相关论文
共 50 条
  • [21] A systematic literature review of machine learning applications in IoT
    Gherbi, Chirihane
    Senouci, Oussama
    Harbi, Yasmine
    Medani, Khedidja
    Aliouat, Zibouda
    INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, 2023, 36 (11)
  • [22] Applications of Machine Learning in Pediatric Hydrocephalus: A Systematic Review
    Pahwa, Bhavya
    Bali, Ojasvini
    Goyal, Sarvesh
    Kedia, Shweta
    NEUROLOGY INDIA, 2021, 69 : S568 - +
  • [23] Machine Learning Applications in Baseball: A Systematic Literature Review
    Koseler, Kaan
    Stephan, Matthew
    APPLIED ARTIFICIAL INTELLIGENCE, 2017, 31 (9-10) : 745 - 763
  • [24] Machine Learning Applications in Psoriasis Treatment: A Systematic Review
    McMullen, Eric
    Al-Naser, Yousif
    Chung, Jonathan
    Yeung, Jensen
    JOURNAL OF CUTANEOUS MEDICINE AND SURGERY, 2024, 28 (03) : 301 - 302
  • [25] Applications of machine learning in addiction studies: A systematic review
    Mak, Kwok Kei
    Lee, Kounseok
    Park, Cheolyong
    PSYCHIATRY RESEARCH, 2019, 275 : 53 - 60
  • [26] Applications of machine learning to BIM: A systematic literature review
    Zabin, Asem
    Gonzalez, Vicente A.
    Zou, Yang
    Amor, Robert
    ADVANCED ENGINEERING INFORMATICS, 2022, 51
  • [27] Comparison of Endoscopic Discectomy Versus Non-Endoscopic Discectomy for Symptomatic Lumbar Disc Herniation: A Systematic Review and Meta-Analysis
    Li, Wei-Shang
    Yan, Qi
    Cong, Lin
    GLOBAL SPINE JOURNAL, 2022, 12 (05) : 1012 - 1026
  • [28] Artificial Learning and Machine Learning Applications in Spine Surgery: A Systematic Review
    Lopez, Cesar D.
    Boddapati, Venkat
    Lombardi, Joseph M.
    Lee, Nathan J.
    Mathew, Justin
    Danford, Nicholas C.
    Iyer, Rajiv R.
    Dyrszka, Marc D.
    Sardar, Zeeshan M.
    Lenke, Lawrence G.
    Lehman, Ronald A.
    GLOBAL SPINE JOURNAL, 2022, 12 (07) : 1561 - 1572
  • [29] APPLICATION OF MACHINE LEARNING IN ENDOMETRIAL CANCER: A SYSTEMATIC REVIEW
    Piedimonte, Sabrina
    Rosa, Gabriela
    Gerstl, Brigitte
    Coronel, Ana
    Sopocado, Mars
    Vicus, Danielle
    Llenno, Salvador
    INTERNATIONAL JOURNAL OF GYNECOLOGICAL CANCER, 2022, 32 : A106 - A106
  • [30] AI in Endoscopic Gastrointestinal Diagnosis: A Systematic Review of Deep Learning and Machine Learning Techniques
    Lewis, Jovita Relasha
    Pathan, Sameena
    Kumar, Preetham
    Dias, Cifha Crecil
    IEEE ACCESS, 2024, 12 : 163764 - 163786