Sparse quantile regression

被引:0
|
作者
Chen, Le-Yu [1 ]
Lee, Sokbae [2 ,3 ]
机构
[1] Acad Sinica, Inst Econ, Taipei City, Taiwan
[2] Columbia Univ, Dept Econ, New York, NY 10027 USA
[3] Inst Fiscal Studies, Ctr Microdata Methods & Practice, London, England
基金
英国经济与社会研究理事会; 欧洲研究理事会;
关键词
Quantile regression; Sparse estimation; Mixed integer optimization; Finite sample property; Conformal prediction; Hamming distance; NONCONCAVE PENALIZED LIKELIHOOD; POST-SELECTION INFERENCE; VARIABLE SELECTION;
D O I
10.1016/j.jeconom.2023.02.014
中图分类号
F [经济];
学科分类号
02 ;
摘要
We consider both l0-penalized and l0-constrained quantile regression estimators. For the l0-penalized estimator, we derive an exponential inequality on the tail probability of excess quantile prediction risk and apply it to obtain non-asymptotic upper bounds on the mean-square parameter and regression function estimation errors. We also derive analogous results for the l0-constrained estimator. The resulting rates of convergence are nearly minimax-optimal and the same as those for l1-penalized and non-convex penalized estimators. Further, we characterize expected Hamming loss for the l0- penalized estimator. We implement the proposed procedure via mixed integer linear programming and also a more scalable first-order approximation algorithm. We illustrate the finite-sample performance of our approach in Monte Carlo experiments and its usefulness in a real data application concerning conformal prediction of infant birth weights (with n & AP; 103 and up to p > 103). In sum, our l0-based method produces a much sparser estimator than the l1-penalized and non-convex penalized approaches without compromising precision. & COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页码:2195 / 2217
页数:23
相关论文
共 50 条
  • [41] Bayesian lasso binary quantile regression
    Dries F. Benoit
    Rahim Alhamzawi
    Keming Yu
    Computational Statistics, 2013, 28 : 2861 - 2873
  • [42] Bayesian reciprocal LASSO quantile regression
    Alhamzawi, Rahim
    Mallick, Himel
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (11) : 6479 - 6494
  • [43] Bayesian semiparametric additive quantile regression
    Waldmann, Elisabeth
    Kneib, Thomas
    Yue, Yu Ryan
    Lang, Stefan
    Flexeder, Claudia
    STATISTICAL MODELLING, 2013, 13 (03) : 223 - 252
  • [44] Composite quantile regression for massive datasets
    Jiang, Rong
    Hu, Xueping
    Yu, Keming
    Qian, Weimin
    STATISTICS, 2018, 52 (05) : 980 - 1004
  • [45] Horseshoe prior Bayesian quantile regression
    Kohns, David
    Szendrei, Tibor
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2024, 73 (01) : 193 - 220
  • [46] Bayesian lasso binary quantile regression
    Benoit, Dries F.
    Alhamzawi, Rahim
    Yu, Keming
    COMPUTATIONAL STATISTICS, 2013, 28 (06) : 2861 - 2873
  • [47] Regularized partially functional quantile regression
    Yao, Fang
    Sue-Chee, Shivon
    Wang, Fan
    JOURNAL OF MULTIVARIATE ANALYSIS, 2017, 156 : 39 - 56
  • [48] Quantile regression with group lasso for classification
    Hashem, Hussein
    Vinciotti, Veronica
    Alhamzawi, Rahim
    Yu, Keming
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2016, 10 (03) : 375 - 390
  • [49] FOCUSSED MODEL SELECTION IN QUANTILE REGRESSION
    Behl, Peter
    Claeskens, Gerda
    Dette, Holger
    STATISTICA SINICA, 2014, 24 (02) : 601 - 624
  • [50] Bayesian quantile regression for streaming data
    Xie, Xiaoyue
    Tian, Zixuan
    Shi, Jian
    AIMS MATHEMATICS, 2024, 9 (09): : 26114 - 26138