Sparse quantile regression

被引:0
|
作者
Chen, Le-Yu [1 ]
Lee, Sokbae [2 ,3 ]
机构
[1] Acad Sinica, Inst Econ, Taipei City, Taiwan
[2] Columbia Univ, Dept Econ, New York, NY 10027 USA
[3] Inst Fiscal Studies, Ctr Microdata Methods & Practice, London, England
基金
英国经济与社会研究理事会; 欧洲研究理事会;
关键词
Quantile regression; Sparse estimation; Mixed integer optimization; Finite sample property; Conformal prediction; Hamming distance; NONCONCAVE PENALIZED LIKELIHOOD; POST-SELECTION INFERENCE; VARIABLE SELECTION;
D O I
10.1016/j.jeconom.2023.02.014
中图分类号
F [经济];
学科分类号
02 ;
摘要
We consider both l0-penalized and l0-constrained quantile regression estimators. For the l0-penalized estimator, we derive an exponential inequality on the tail probability of excess quantile prediction risk and apply it to obtain non-asymptotic upper bounds on the mean-square parameter and regression function estimation errors. We also derive analogous results for the l0-constrained estimator. The resulting rates of convergence are nearly minimax-optimal and the same as those for l1-penalized and non-convex penalized estimators. Further, we characterize expected Hamming loss for the l0- penalized estimator. We implement the proposed procedure via mixed integer linear programming and also a more scalable first-order approximation algorithm. We illustrate the finite-sample performance of our approach in Monte Carlo experiments and its usefulness in a real data application concerning conformal prediction of infant birth weights (with n & AP; 103 and up to p > 103). In sum, our l0-based method produces a much sparser estimator than the l1-penalized and non-convex penalized approaches without compromising precision. & COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页码:2195 / 2217
页数:23
相关论文
共 50 条
  • [31] Hierarchically penalized quantile regression
    Kang, Jongkyeong
    Bang, Sungwan
    Jhun, Myoungshic
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (02) : 340 - 356
  • [32] Simultaneous variable selection and parametric estimation for quantile regression
    Xiong, Wei
    Tian, Maozai
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2015, 44 (01) : 134 - 149
  • [33] Feature selection for probabilistic load forecasting via sparse penalized quantile regression
    Yi WANG
    Dahua GAN
    Ning ZHANG
    Le XIE
    Chongqing KANG
    Journal of Modern Power Systems and Clean Energy, 2019, 7 (05) : 1200 - 1209
  • [34] Variable selection of the quantile varying coefficient regression models
    Zhao, Weihua
    Zhang, Riquan
    Lv, Yazhao
    Liu, Jicai
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2013, 42 (03) : 343 - 358
  • [35] Quantile regression for additive coefficient models in high dimensions
    Fan, Zengyan
    Lian, Heng
    JOURNAL OF MULTIVARIATE ANALYSIS, 2018, 164 : 54 - 64
  • [36] Marginal quantile regression for varying coefficient models with longitudinal data
    Zhao, Weihua
    Zhang, Weiping
    Lian, Heng
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2020, 72 (01) : 213 - 234
  • [37] Quantile regression for large-scale data via sparse exponential transform method
    Xu, Q. F.
    Cai, C.
    Jiang, C. X.
    Huang, X.
    STATISTICS, 2019, 53 (01) : 26 - 42
  • [38] l1-PENALIZED QUANTILE REGRESSION IN HIGH-DIMENSIONAL SPARSE MODELS
    Belloni, Alexandre
    Chernozhukov, Victor
    ANNALS OF STATISTICS, 2011, 39 (01): : 82 - 130
  • [39] Optimal portfolio selection using quantile and composite quantile regression models
    Aghamohammadi, A.
    Dadashi, H.
    Sojoudi, Mahdi
    Sojoudi, Meysam
    Tavoosi, M.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (07) : 3047 - 3057
  • [40] Quantile Regression under Local Misspecification
    Duan, Xiao-gang
    Wang, Qi-hua
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2020, 36 (04): : 790 - 802