Sparse quantile regression

被引:0
|
作者
Chen, Le-Yu [1 ]
Lee, Sokbae [2 ,3 ]
机构
[1] Acad Sinica, Inst Econ, Taipei City, Taiwan
[2] Columbia Univ, Dept Econ, New York, NY 10027 USA
[3] Inst Fiscal Studies, Ctr Microdata Methods & Practice, London, England
基金
英国经济与社会研究理事会; 欧洲研究理事会;
关键词
Quantile regression; Sparse estimation; Mixed integer optimization; Finite sample property; Conformal prediction; Hamming distance; NONCONCAVE PENALIZED LIKELIHOOD; POST-SELECTION INFERENCE; VARIABLE SELECTION;
D O I
10.1016/j.jeconom.2023.02.014
中图分类号
F [经济];
学科分类号
02 ;
摘要
We consider both l0-penalized and l0-constrained quantile regression estimators. For the l0-penalized estimator, we derive an exponential inequality on the tail probability of excess quantile prediction risk and apply it to obtain non-asymptotic upper bounds on the mean-square parameter and regression function estimation errors. We also derive analogous results for the l0-constrained estimator. The resulting rates of convergence are nearly minimax-optimal and the same as those for l1-penalized and non-convex penalized estimators. Further, we characterize expected Hamming loss for the l0- penalized estimator. We implement the proposed procedure via mixed integer linear programming and also a more scalable first-order approximation algorithm. We illustrate the finite-sample performance of our approach in Monte Carlo experiments and its usefulness in a real data application concerning conformal prediction of infant birth weights (with n & AP; 103 and up to p > 103). In sum, our l0-based method produces a much sparser estimator than the l1-penalized and non-convex penalized approaches without compromising precision. & COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页码:2195 / 2217
页数:23
相关论文
共 50 条
  • [21] Locally adaptive sparse additive quantile regression model with TV penalty
    Wang, Yue
    Lin, Hongmei
    Fan, Zengyan
    Lian, Heng
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2024, 232
  • [22] Robust Integrative Analysis via Quantile Regression with and
    Zeng, Hao
    Wan, Chuang
    Zhong, Wei
    Liu, Tuo
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2025, 234
  • [23] Marginalized lasso in sparse regression
    Lee, Seokho
    Kim, Seonhwa
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2019, 48 (03) : 396 - 411
  • [24] Regularized Bayesian quantile regression
    El Adlouni, Salaheddine
    Salaou, Garba
    St-Hilaire, Andre
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2018, 47 (01) : 277 - 293
  • [25] Bayesian Regularized Quantile Regression
    Li, Qing
    Xi, Ruibin
    Lin, Nan
    BAYESIAN ANALYSIS, 2010, 5 (03): : 533 - 556
  • [26] Bayesian composite quantile regression
    Huang, Hanwen
    Chen, Zhongxue
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (18) : 3744 - 3754
  • [27] Feature selection for probabilistic load forecasting via sparse penalized quantile regression
    Wang, Yi
    Gan, Dahua
    Zhang, Ning
    Xie, Le
    Kang, Chongqing
    JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, 2019, 7 (05) : 1200 - 1209
  • [28] SPARSE AND LOW-RANK MATRIX QUANTILE ESTIMATION WITH APPLICATION TO QUADRATIC REGRESSION
    Lu, Wenqi
    Zhu, Zhongyi
    Lian, Heng
    STATISTICA SINICA, 2023, 33 (02) : 945 - 959
  • [29] Group penalized quantile regression
    Ouhourane, Mohamed
    Yang, Yi
    Benedet, Andrea L.
    Oualkacha, Karim
    STATISTICAL METHODS AND APPLICATIONS, 2022, 31 (03): : 495 - 529
  • [30] Group penalized quantile regression
    Mohamed Ouhourane
    Yi Yang
    Andréa L. Benedet
    Karim Oualkacha
    Statistical Methods & Applications, 2022, 31 : 495 - 529