AdaPT: Fast Emulation of Approximate DNN Accelerators in PyTorch

被引:11
|
作者
Danopoulos, Dimitrios [1 ]
Zervakis, Georgios [2 ]
Siozios, Kostas [3 ]
Soudris, Dimitrios [1 ]
Henkel, Joerg [2 ]
机构
[1] Natl Tech Univ Athens, Sch Elect & Comp Engn, Athens 15780, Greece
[2] Karlsruhe Inst Technol, Chair Embedded Syst, D-76131 Karlsruhe, Germany
[3] Aristotle Univ Thessaloniki, Dept Phys, Thessaloniki 54124, Greece
关键词
Accelerator; approximate computing; deep neural network (DNN); PyTorch; quantization; DESIGN;
D O I
10.1109/TCAD.2022.3212645
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Current state-of-the-art employs approximate multipliers to address the highly increased power demands of deep neural network (DNN) accelerators. However, evaluating the accuracy of approximate DNNs is cumbersome due to the lack of adequate support for approximate arithmetic in DNN frameworks. We address this inefficiency by presenting AdaPT, a fast emulation framework that extends PyTorch to support approximate inference as well as approximation-aware retraining. AdaPT can be seamlessly deployed and is compatible with the most DNNs. We evaluate the framework on several DNN models and application fields, including CNNs, LSTMs, and GANs for a number of approximate multipliers with distinct bitwidth values. The results show substantial error recovery from approximate retraining and reduced inference time up to 53.9x with respect to the baseline approximate implementation.
引用
收藏
页码:2074 / 2078
页数:5
相关论文
共 50 条
  • [1] Rapid Emulation of Approximate DNN Accelerators
    Farahbakhsh, Amirreza
    Hosseini, Seyedmehdi
    Kachuee, Sajjad
    Sharilkhani, Mohammad
    2024 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS 2024, 2024,
  • [2] TFApprox: Towards a Fast Emulation of DNN Approximate Hardware Accelerators on GPU
    Vaverka, Filip
    Mrazek, Vojtech
    Vasicek, Zdenek
    Sekanina, Lukas
    PROCEEDINGS OF THE 2020 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE 2020), 2020, : 294 - 297
  • [3] Positive/Negative Approximate Multipliers for DNN Accelerators
    Spantidi, Ourania
    Zervakis, Georgios
    Anagnostopoulos, Iraklis
    Amrouch, Hussain
    Henkel, Joerg
    2021 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER AIDED DESIGN (ICCAD), 2021,
  • [4] Arbitor: A Numerically Accurate Hardware Emulation Tool for DNN Accelerators
    Jiang, Chenhao
    Jayarajan, Anand
    Lu, Hao
    Pekhimenko, Gennady
    PROCEEDINGS OF THE 2023 USENIX ANNUAL TECHNICAL CONFERENCE, 2023, : 519 - 536
  • [5] Thermal-Aware Design for Approximate DNN Accelerators
    Zervakis, Georgios
    Anagnostopoulos, Iraklis
    Salamin, Sami
    Spantidi, Ourania
    Roman-Ballesteros, Isai
    Henkel, Joerg
    Amrouch, Hussam
    IEEE TRANSACTIONS ON COMPUTERS, 2022, 71 (10) : 2687 - 2697
  • [6] Exploiting the Approximate Computing Paradigm with DNN Hardware Accelerators
    Russo, Enrico
    Palesi, Maurizio
    Monteleone, Salvatore
    Patti, Davide
    Landhiri, Habiba
    Ascia, Giuseppe
    Catania, Vincenzo
    2022 11TH MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING (MECO), 2022, : 379 - 382
  • [7] AdAM: Adaptive Approximate Multiplier for Fault Tolerance in DNN Accelerators
    Taheri, Mahdi
    Cherezova, Natalia
    Nazari, Samira
    Azarpeyvand, Ali
    Ghasempouri, Tara
    Daneshtalab, Masoud
    Raik, Jaan
    Jenihhin, Maksim
    IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY, 2025, 25 (01) : 66 - 75
  • [8] Combined Application of Approximate Computing Techniques in DNN Hardware Accelerators
    Russo, Enrico
    Palesi, Maurizio
    Patti, Davide
    Lahdhiri, Habiba
    Monteleone, Salvatore
    Ascia, Giuseppe
    Catania, Vincenzo
    2022 IEEE 36TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS (IPDPSW 2022), 2022, : 16 - 23
  • [9] A Fast Precision Tuning Solution for Always-On DNN Accelerators
    Wang, Ying
    He, Yintao
    Cheng, Long
    Li, Huawei
    Li, Xiaowei
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2022, 41 (05) : 1236 - 1248
  • [10] AdAM: Adaptive Fault-Tolerant Approximate Multiplier for Edge DNN Accelerators
    Taheri, Mahdi
    Cherezova, Natalia
    Nazari, Samira
    Rafiq, Ahsan
    Azarpeyvand, Ali
    Ghasempouri, Tara
    Daneshtalab, Masoud
    Raik, Jaan
    Jenihhin, Maksim
    IEEE EUROPEAN TEST SYMPOSIUM, ETS 2024, 2024,