Computational ghost imaging based on negative film imaging

被引:2
作者
Yang, Anrun [1 ]
Zhang, Yuan [1 ]
Ren, Lirong [1 ]
Li, Fangqiong [1 ]
Wu, Yuanyuan [1 ]
Wu, Lei [1 ]
Zhang, Dejian [2 ]
Liu, Jiangtao [1 ]
机构
[1] Guizhou Minzu Univ, Sch Phys & Mechatron Engn, Guiyang 550025, Peoples R China
[2] Nanchang Univ, Dept Phys, Nanchang 330031, Peoples R China
来源
OPTIK | 2023年 / 284卷
基金
中国国家自然科学基金;
关键词
Computational ghost imaging; Negative film imaging; Complementary colors; EDGE-DETECTION; SCATTERING;
D O I
10.1016/j.ijleo.2023.170932
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The influence of negative or positive film imaging on ghost imaging quality is studied. The study found that when the object to be imaged is black and white, the imaging effect of the negative film is significantly better than that of the positive film, and the corresponding contrast to noise ratio can be increased by about 241%, or reduce the sampling times by 5 times under the same image quality. The main reason is that the absolute intensity and relative intensity fluctuation of the negative film imaging is greater. When the object to be imaged is in color, the use of a reverse color light source with the background color of the imaged object can achieve a similar negative imaging effect to improve the imaging quality, and the corresponding contrast to noise ratio can be increased by 52%-69%.
引用
收藏
页数:7
相关论文
共 50 条
[41]   Optical encryption scheme with double secret keys based on computational ghost imaging [J].
Cao F. ;
Zhao S. .
Guangxue Xuebao/Acta Optica Sinica, 2017, 37 (01)
[42]   Anti-noise computational ghost imaging based on wavelet threshold denoising [J].
Fan, Yiran ;
Bai, Yanfeng ;
Fu, Qin ;
Zhang, Rong ;
Zhou, Liyu ;
Zhu, Xiaohui ;
Zou, Xuanpengfan ;
Fu, Xiquan .
OPTICS COMMUNICATIONS, 2024, 566
[43]   Tracking Compensation in Computational Ghost Imaging of Moving Objects [J].
Yang, Zhaohua ;
Li, Wang ;
Song, Zhengyan ;
Yu, Wen-Kai ;
Wu, Ling-An .
IEEE SENSORS JOURNAL, 2021, 21 (01) :85-91
[44]   Deep-learning denoising computational ghost imaging [J].
Wu, Heng ;
Wang, Ruizhou ;
Zhao, Genping ;
Xiao, Huapan ;
Liang, Jian ;
Wang, Daodang ;
Tian, Xiaobo ;
Cheng, Lianglun ;
Zhang, Xianmin .
OPTICS AND LASERS IN ENGINEERING, 2020, 134
[45]   Computational Ghost Imaging Based on Chromatic LED Array with Special RGB Arrangement [J].
Huang Hongxu ;
Li Lijing ;
Sun Mingjie .
LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (10)
[46]   Multi-Wavelength Computational Ghost Imaging Based on Feature Dimensionality Reduction [J].
Wang, Hong ;
Wang, Xiaoqian ;
Gao, Chao ;
Wang, Yu ;
Zhao, Huan ;
Yao, Zhihai .
PHOTONICS, 2024, 11 (08)
[47]   Improving PSNR and computational efficiency in orthogonal ghost imaging [J].
Hassanzadeh, Kobra ;
Ahmadi-Kandjani, Sohrab ;
Kheradmand, Reza ;
Mortazavi, Seyed Amir .
SCIENTIFIC REPORTS, 2025, 15 (01)
[48]   Effect of the ratio of black speckle on computational ghost imaging [J].
Yang A. ;
Zhang Y. ;
Wu L. ;
Chang J. ;
Huang J. ;
Li W. .
Optik, 2023, 290
[49]   Computational ghost imaging by using complementary illumination patterns [J].
Luo, Bo-Bing ;
Tsai, Kun-Chi ;
Liu, Jung-Ping .
BIOMEDICAL IMAGING AND SENSING CONFERENCE, 2018, 10711
[50]   An encryption method based on computational ghost imaging with chaotic mapping and DNA encoding [J].
Yang, Zhongzhuo ;
Yuan, Sheng ;
Li, Jinxi ;
Bai, Xing ;
Yu, Zhan ;
Zhou, Xin .
JOURNAL OF OPTICS, 2022, 24 (06)