A Dominant-Negative Mutant of ANXA7 Impairs Calcium Signaling and Enhances the Proliferation of Prostate Cancer Cells by Downregulating the IP3 Receptor and the PI3K/mTOR Pathway

被引:3
作者
Srivastava, Meera [1 ]
Bera, Alakesh [1 ]
Eidelman, Ofer [1 ]
Tran, Minh B. [1 ]
Jozwik, Catherine [1 ]
Glasman, Mirta [1 ]
Leighton, Ximena [1 ]
Caohuy, Hung [1 ]
Pollard, Harvey B. [1 ]
机构
[1] Uniformed Serv Univ Hlth Sci USUHS, Inst Mol Med, Dept Anat Physiol & Genet, Sch Med, Bethesda, MD 20814 USA
关键词
ANXA7; dominant-negative triple mutant (DNTM); IP3; mTOR; PI3K; SYNEXIN ANNEXIN-VII; PHOSPHOLIPASE-D ACTIVITY; TUMOR-SUPPRESSOR GENE; ENDOPLASMIC-RETICULUM; CHROMAFFIN CELLS; CA2+ CONCENTRATION; ANDROGEN RECEPTOR; PROTEIN SYNEXIN; A1; EXPRESSION; GROWTH;
D O I
10.3390/ijms24108818
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Annexin A7/ANXA7 is a calcium-dependent membrane fusion protein with tumor suppressor gene (TSG) properties, which is located on chromosome 10q21 and is thought to function in the regulation of calcium homeostasis and tumorigenesis. However, whether the molecular mechanisms for tumor suppression are also involved in the calcium- and phospholipid-binding properties of ANXA7 remain to be elucidated. We hypothesized that the 4 C-terminal endonexin-fold repeats in ANXA7 (GX(X)GT), which are contained within each of the 4 annexin repeats with 70 amino acids, are responsible for both calcium- and GTP-dependent membrane fusion and the tumor suppressor function. Here, we identified a dominant-negative triple mutant (DNTM/DN-ANXA7J) that dramatically suppressed the ability of ANXA7 to fuse with artificial membranes while also inhibiting tumor cell proliferation and sensitizing cells to cell death. We also found that the [DNTM]ANA7 mutation altered the membrane fusion rate and the ability to bind calcium and phospholipids. In addition, in prostate cancer cells, our data revealed that variations in phosphatidylserine exposure, membrane permeabilization, and cellular apoptosis were associated with differential IP3 receptor expression and PI3K/AKT/mTOR modulation. In conclusion, we discovered a triple mutant of ANXA7, associated with calcium and phospholipid binding, which leads to the loss of several essential functions of ANXA7 pertinent to tumor protection and highlights the importance of the calcium signaling and membrane fusion functions of ANXA7 for preventing tumorigenesis.
引用
收藏
页数:27
相关论文
共 50 条
  • [41] Liquidambar orientalisMill. gum extract induces autophagy via PI3K/Akt/mTOR signaling pathway in prostate cancer cells
    Atmaca, Harika
    Pulat, Cisil Camli
    Cittan, Mustafa
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH, 2022, 32 (05) : 1011 - 1019
  • [42] Blockage of glutaminolysis enhances the sensitivity of ovarian cancer cells to PI3K/mTOR inhibition involvement of STAT3 signaling
    Guo, Lili
    Zhou, Bo
    Liu, Zhengqing
    Xu, Ying
    Lu, Hao
    Xia, Meng
    Guo, Ensong
    Shan, Wanying
    Chen, Gang
    Wang, Changyu
    TUMOR BIOLOGY, 2016, 37 (08) : 11007 - 11015
  • [43] CLEC5A promotes the proliferation of gastric cancer cells by activating the PI3K/AKT/mTOR pathway
    Wang, Quhui
    Shi, Muqi
    Sun, Shiqi
    Zhou, Quan
    Ding, Li
    Jiang, Chenxia
    Bian, Tingting
    Jia, Feng
    Liu, Yifei
    Qin, Jun
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2020, 524 (03) : 656 - 662
  • [44] Liraglutide attenuates obese-associated breast cancer cell proliferation via inhibiting PI3K/Akt/mTOR signaling pathway
    Alanteet, Alaa
    Attia, Hala
    Alfayez, Musaed
    Mahmood, Amer
    Alsaleh, Khalid
    Alsanea, Sary
    SAUDI PHARMACEUTICAL JOURNAL, 2024, 32 (01)
  • [45] Nucleoporin 37 promotes the cell proliferation, migration, and invasion of gastric cancer through activating the PI3K/AKT/mTOR signaling pathway
    Jishui Zhang
    Wenhao Lv
    Yagang Liu
    Weihua Fu
    Baosheng Chen
    Qiutong Ma
    Xin Gao
    Xiuxia Cui
    In Vitro Cellular & Developmental Biology - Animal, 2021, 57 : 987 - 997
  • [46] Osteoglycin (OGN) Inhibits Cell Proliferation and Invasiveness in Breast Cancer via PI3K/Akt/mTOR Signaling Pathway
    Xu, Tao
    Zhang, Rui
    Dong, Menglu
    Zhang, Zeyu
    Li, Hanning
    Zhan, Chenao
    Li, Xingrui
    ONCOTARGETS AND THERAPY, 2019, 12 : 10639 - 10650
  • [47] CYP2E1 changes the biological function of gastric cancer cells via the PI3K/Akt/mTOR signaling pathway
    Wang, Rui-Ying
    Chen, Xiao-Wei
    Zhang, Wen-Wen
    Jiang, Fei
    Liu, Meng-Qi
    Shen, Xiao-Bing
    MOLECULAR MEDICINE REPORTS, 2020, 21 (02) : 842 - 850
  • [48] Nucleoporin 37 promotes the cell proliferation, migration, and invasion of gastric cancer through activating the PI3K/AKT/mTOR signaling pathway
    Zhang, Jishui
    Lv, Wenhao
    Liu, Yagang
    Fu, Weihua
    Chen, Baosheng
    Ma, Qiutong
    Gao, Xin
    Cui, Xiuxia
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL, 2021, 57 (10) : 987 - 997
  • [49] UNBS5162 inhibits the proliferation of esophageal cancer squamous cells via the PI3K/AKT signaling pathway
    He, Dan
    Zhang, Suolin
    MOLECULAR MEDICINE REPORTS, 2018, 17 (01) : 549 - 555
  • [50] B7-H4 facilitates proliferation and metastasis of colorectal carcinoma cell through PI3K/Akt/mTOR signaling pathway
    Li, Chun
    Zhan, Yudong
    Ma, Xuzhe
    Fang, Hui
    Gai, Xiaodong
    CLINICAL AND EXPERIMENTAL MEDICINE, 2020, 20 (01) : 79 - 86