SAAN: Similarity-Aware Attention Flow Network for Change Detection With VHR Remote Sensing Images

被引:9
|
作者
Guo, Haonan [1 ]
Su, Xin [2 ]
Wu, Chen [1 ]
Du, Bo [3 ,4 ]
Zhang, Liangpei [1 ]
机构
[1] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & Re, Wuhan 430079, Peoples R China
[2] Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan 430079, Peoples R China
[3] Wuhan Univ, Inst Artificial Intelligence, Natl Engn Res Ctr Multimedia Software, Sch Comp Sci, Wuhan 430079, Peoples R China
[4] Wuhan Univ, Hubei Key Lab Multimedia & Network Commun Engn, Wuhan 430079, Peoples R China
关键词
Remote sensing image; change detection; similarity measurement; attention mechanism; MAD;
D O I
10.1109/TIP.2024.3349868
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Change detection (CD) is a fundamental and important task for monitoring the land surface dynamics in the earth observation field. Existing deep learning-based CD methods typically extract bi-temporal image features using a weight-sharing Siamese encoder network and identify change regions using a decoder network. These CD methods, however, still perform far from satisfactorily as we observe that 1) deep encoder layers focus on irrelevant background regions; and 2) the models' confidence in the change regions is inconsistent at different decoder stages. The first problem is because deep encoder layers cannot effectively learn from imbalanced change categories using the sole output supervision, while the second problem is attributed to the lack of explicit semantic consistency preservation. To address these issues, we design a novel similarity-aware attention flow network (SAAN). SAAN incorporates a similarity-guided attention flow module with deeply supervised similarity optimization to achieve effective change detection. Specifically, we counter the first issue by explicitly guiding deep encoder layers to discover semantic relations from bi-temporal input images using deeply supervised similarity optimization. The extracted features are optimized to be semantically similar in the unchanged regions and dissimilar in the changing regions. The second drawback can be alleviated by the proposed similarity-guided attention flow module, which incorporates similarity-guided attention modules and attention flow mechanisms to guide the model to focus on discriminative channels and regions. We evaluated the effectiveness and generalization ability of the proposed method by conducting experiments on a wide range of CD tasks. The experimental results demonstrate that our method achieves excellent performance on several CD tasks, with discriminative features and semantic consistency preserved.
引用
收藏
页码:2599 / 2613
页数:15
相关论文
共 50 条
  • [21] Change detection in VHR Remote Sensing Images by automatic sample selection and progressive classification
    Shen, Yuzhen
    Yu, Yuanhe
    Wei, Yuchun
    Guo, Houcai
    Rui, Xudong
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2023, 44 (21) : 6595 - 6614
  • [22] Object-based change detection on multiscale fusion for VHR remote sensing images
    Zhang, Hansong
    Chen, Jianyu
    Liu, Xin
    MIPPR 2015: REMOTE SENSING IMAGE PROCESSING, GEOGRAPHIC INFORMATION SYSTEMS, AND OTHER APPLICATIONS, 2015, 9815
  • [23] Change Detection of Remote Sensing Images Based on Attention Mechanism
    Chen, Long
    Zhang, Dezheng
    Li, Peng
    Lv, Peng
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2020, 2020
  • [24] Laplacian Feature Pyramid Network for Object Detection in VHR Optical Remote Sensing Images
    Zhang, Wenhua
    Jiao, Licheng
    Li, Yuxuan
    Huang, Zhongjian
    Wang, Haoran
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [25] Local and Global Feature Learning With Kernel Scale-Adaptive Attention Network for VHR Remote Sensing Change Detection
    Lei, Tao
    Xue, Dinghua
    Ning, Hailong
    Yang, Shuangming
    Lv, Zhiyong
    Nandi, Asoke K.
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 7308 - 7322
  • [26] Attention-Aware Three-Branch Network for Salient Object Detection in Remote Sensing Images
    Wang, Xin
    Zhang, Zhilu
    Jing, Shihan
    Zhou, Huiyu
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [27] Boundary-Aware Dual-Stream Network for VHR Remote Sensing Images Semantic Segmentation
    Nong, Zhixian
    Su, Xin
    Liu, Yi
    Zhan, Zongqian
    Yuan, Qiangqiang
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 5260 - 5268
  • [28] Context-Aware Convolutional Neural Network for Object Detection in VHR Remote Sensing Imagery
    Gong, Yiping
    Xiao, Zhifeng
    Tan, Xiaowei
    Sui, Haigang
    Xu, Chuan
    Duan, Haiwang
    Li, Deren
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (01): : 34 - 44
  • [29] Statistical Similarity Based Change Detection for Multitemporal Remote Sensing Images
    Aktar M.
    Mamun M.A.
    Hossain M.A.
    Aktar, Mumu (mumu.ruet@gmail.com), 2017, Hindawi Limited, 410 Park Avenue, 15th Floor, 287 pmb, New York, NY 10022, United States (2017)
  • [30] Spatial and Channel Similarity-Aware Attention-Enhanced Network for Object Counting
    Li, Ran
    Wu, Chunlei
    Lu, Jing
    Zhao, Wenqi
    APPLIED SCIENCES-BASEL, 2025, 15 (05):