Deep learning for parameter estimation of supermassive binary black holes with simulated LISA data

被引:6
作者
Tang, Qiao [1 ]
Yang, Nan [2 ]
Li, Jin [1 ]
机构
[1] Chongqing Univ, Coll Phys, Chongqing 401331, Peoples R China
[2] Xingtai Univ, Dept Elect Informat Sci & Technol, Xingtai 054001, Peoples R China
基金
中国国家自然科学基金;
关键词
Gravitational waves; Parameter estimation; Deep learning; Black Hole; LISA; SPACE;
D O I
10.1016/j.cjph.2023.12.034
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Previous studies have demonstrated that deep learning is an effective approach for processing gravitational wave (GW) data obtained from ground-based detectors, as it can enhance the efficiency of data processing and offer great potential for real -time parameter estimation. In this paper, we explore three different deep learning architectures (MCD, TFP, and VI) for inferring the chirp mass (Mc) and the luminosity distance (DL) of supermassive binary black holes (SMBBHs) using simulated data from the Laser Interferometer Space Antenna (LISA). We train the neural networks with the simulated data and evaluate their performance on predicting the parameters (Mc, DL). The results show that more than 97.5% of the true values fall within the 3o- confidence interval of the predicted values with the optimal network. To verify the accuracy of the network on parameter estimation, we also calculate the estimation error of the parameters using the Fisher Information Matrix (FIM) with the same simulated data. By comparing the root-mean-square error (RMSE) between deep learning and FIM, we find that the two methods are comparable, which implies that deep learning can be reliable for GW parameter estimation.
引用
收藏
页码:301 / 310
页数:10
相关论文
共 37 条
[1]   Advanced LIGO [J].
Aasi, J. ;
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. ;
Abernathy, M. R. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. ;
Affeldt, C. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Ain, A. ;
Ajith, P. ;
Alemic, A. ;
Allen, B. ;
Amariutei, D. ;
Anderson, S. B. ;
Anderson, W. G. ;
Arai, K. ;
Araya, M. C. ;
Arceneaux, C. ;
Areeda, J. S. ;
Ashton, G. ;
Ast, S. ;
Aston, S. M. ;
Aufmuth, P. ;
Aulbert, C. ;
Aylott, B. E. ;
Babak, S. ;
Baker, P. T. ;
Ballmer, S. W. ;
Barayoga, J. C. ;
Barbet, M. ;
Barclay, S. ;
Barish, B. C. ;
Barker, D. ;
Barr, B. ;
Barsotti, L. ;
Bartlett, J. ;
Barton, M. A. ;
Bartos, I. ;
Bassiri, R. ;
Batch, J. C. ;
Baune, C. ;
Behnke, B. ;
Bell, A. S. ;
Bell, C. .
CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (07)
[2]   GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abraham, S. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, G. ;
Allocca, A. ;
Aloy, M. A. ;
Altin, P. A. ;
Amato, A. ;
Ananyeva, A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Angelova, S., V ;
Antier, S. ;
Appert, S. ;
Arai, K. ;
Araya, M. C. ;
Areeda, J. S. ;
Arene, M. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Aston, S. M. ;
Astone, P. ;
Aubin, F. ;
Aufmuth, P. ;
AultONeal, K. ;
Austin, C. ;
Avendano, V ;
Avila-Alvarez, A. ;
Babak, S. ;
Bacon, P. ;
Badaracco, F. ;
Bader, M. K. M. ;
Bae, S. ;
Baker, P. T. .
PHYSICAL REVIEW X, 2019, 9 (03)
[3]   Observation of Gravitational Waves from a Binary Black Hole Merger [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abernathy, M. R. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, B. ;
Allocca, A. ;
Altin, P. A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Arai, K. ;
Arain, M. A. ;
Araya, M. C. ;
Arceneaux, C. C. ;
Areeda, J. S. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Ast, M. ;
Aston, S. M. ;
Astone, P. ;
Aufmuth, P. ;
Aulbert, C. ;
Babak, S. ;
Bacon, P. ;
Bader, M. K. M. ;
Baker, P. T. ;
Baldaccini, F. ;
Ballardin, G. ;
Ballmer, S. W. ;
Barayoga, J. C. ;
Barclay, S. E. ;
Barish, B. C. ;
Barker, D. ;
Barone, F. .
PHYSICAL REVIEW LETTERS, 2016, 116 (06)
[4]   Advanced Virgo: a second-generation interferometric gravitational wave detector [J].
Acernese, F. ;
Agathos, M. ;
Agatsuma, K. ;
Aisa, D. ;
Allemandou, N. ;
Allocca, A. ;
Amarni, J. ;
Astone, P. ;
Balestri, G. ;
Ballardin, G. ;
Barone, F. ;
Baronick, J-P ;
Barsuglia, M. ;
Basti, A. ;
Basti, F. ;
Bauer, Th S. ;
Bavigadda, V. ;
Bejger, M. ;
Beker, M. G. ;
Belczynski, C. ;
Bersanetti, D. ;
Bertolini, A. ;
Bitossi, M. ;
Bizouard, M. A. ;
Bloemen, S. ;
Blom, M. ;
Boer, M. ;
Bogaert, G. ;
Bondi, D. ;
Bondu, F. ;
Bonelli, L. ;
Bonnand, R. ;
Boschi, V. ;
Bosi, L. ;
Bouedo, T. ;
Bradaschia, C. ;
Branchesi, M. ;
Briant, T. ;
Brillet, A. ;
Brisson, V. ;
Bulik, T. ;
Bulten, H. J. ;
Buskulic, D. ;
Buy, C. ;
Cagnoli, G. ;
Calloni, E. ;
Campeggi, C. ;
Canuel, B. ;
Carbognani, F. ;
Cavalier, F. .
CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (02)
[5]   Tri-linear representations for the Laser Interferometer Space Antenna [J].
Andersson, Fredrik ;
Riegger, Franziska ;
Ferraioli, Luigi ;
Giardini, Domenico ;
Robertsson, Johan .
EPL, 2022, 140 (01)
[6]   Searches for mass-asymmetric compact binary coalescence events using neural networks in the LIGO/Virgo third observation period [J].
Andres-Carcasona, M. ;
Menendez-Vazquez, A. ;
Martinez, M. ;
Mir, Ll. M. .
PHYSICAL REVIEW D, 2023, 107 (08)
[7]   Estimating spinning binary parameters and testing alternative theories of gravity with LISA [J].
Berti, E ;
Buonanno, A ;
Will, CM .
PHYSICAL REVIEW D, 2005, 71 (08) :1-24
[8]  
Blundell C, 2015, PR MACH LEARN RES, V37, P1613
[9]   Nested sampling methods [J].
Buchner, Johannes .
STATISTICS SURVEYS, 2023, 17 :169-215
[10]   Comparison of post-Newtonian templates for compact binary inspiral signals in gravitational-wave detectors [J].
Buonanno, Alessandra ;
Iyer, Bala R. ;
Ochsner, Evan ;
Pan, Yi ;
Sathyaprakash, B. S. .
PHYSICAL REVIEW D, 2009, 80 (08)