Laurent polynomial identities on symmetric units of group algebras

被引:0
作者
Akbari-Sehat, M. [1 ]
Ramezan-Nassab, M. [1 ,2 ,3 ]
机构
[1] Kharazmi Univ, Dept Math, Tehran, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
[3] Inst Res Fundamental Sci IPM, Sch Math, POB 193955746, Tehran, Iran
关键词
Group algebra; group identity; involution; polynomial identity;
D O I
10.1080/00927872.2024.2315310
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F be an infinite field of characteristic p not equal 2, G be a group, and ** be an involution of G extended linearly to an involution of the group algebra FG. In the literature, group identities on units U(FG) and on symmetric units U+(FG) = {alpha is an element of U(FG) divided by divided by alpha(& lowast; )= alpha} have been considered. Here, we investigate normalized Laurent polynomial identities (as a generalization of group identities) on U+(FG) under the conditions that either p > 2 or F is algebraically closed. For instance, we show that if G is torsion and U+(FG) satisfies a normalized Laurent polynomial identity, then U+(FG) satisfies a group identity and FG satisfies a polynomial identity.
引用
收藏
页码:3126 / 3133
页数:8
相关论文
共 15 条
[1]   RINGS WITH INVOLUTION [J].
AMITSUR, SA .
ISRAEL JOURNAL OF MATHEMATICS, 1968, 6 (02) :99-&
[2]   Group algebras whose units satisfy a Laurent polynomial identity [J].
Broche, Osnel ;
Goncalves, Jairo Z. ;
del Rio, Angel .
ARCHIV DER MATHEMATIK, 2018, 111 (04) :353-367
[3]   Symmetric units and group identities [J].
Giambruno, A ;
Sehgal, SK ;
Valenti, A .
MANUSCRIPTA MATHEMATICA, 1998, 96 (04) :443-461
[4]   Group identities on symmetric units [J].
Giambruno, A. ;
Milies, C. Polcino ;
Sehgal, Sudarshan K. .
JOURNAL OF ALGEBRA, 2009, 322 (08) :2801-2815
[5]   Star-group identities on units of group algebras: The non-torsion case [J].
Giambruno, Antonio ;
Milies, Cesar Polcino ;
Sehgal, Sudarshan K. .
FORUM MATHEMATICUM, 2018, 30 (01) :213-225
[6]   Star-group identities and groups of units [J].
Giambruno, Antonio ;
Milies, Cesar Polcino ;
Sehgal, Sudarshan K. .
ARCHIV DER MATHEMATIK, 2010, 95 (06) :501-508
[7]  
GOODAIRE EG, 1996, ALTERNATIVE LOOP RIN
[8]   On symmetric elements and symmetric units in group rings [J].
Jespers, E ;
Marín, MR .
COMMUNICATIONS IN ALGEBRA, 2006, 34 (02) :727-736
[9]   A SURVEY ON *-GROUP IDENTITIES ON UNITS OF GROUP RINGS [J].
Lee, Gregory T. .
COMMUNICATIONS IN ALGEBRA, 2012, 40 (12) :4540-4567
[10]  
Lee GT, 2010, ALGEBRA APPL, V12, P1, DOI 10.1007/978-1-84996-504-0