A dynamic kinetic model captures cell-free metabolism for improved butanol production

被引:13
作者
Martin, Jacob P. [1 ,2 ,3 ]
Rasor, Blake J. [1 ,2 ,3 ]
DeBonis, Jonathon [1 ]
Karim, Ashty S. [1 ,2 ,3 ]
Jewett, Michael C. [1 ,2 ,3 ]
Tyo, Keith E. J. [1 ,2 ,3 ]
Broadbelt, Linda J. [1 ,2 ]
机构
[1] Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USA
[2] Northwestern Univ, Ctr Synthet Biol, Evanston, IL 60208 USA
[3] Northwestern Univ, Chem Life Proc Inst, Evanston, IL 60208 USA
基金
美国国家卫生研究院;
关键词
Metabolic modeling; Kinetic modeling; Ensemble modeling; ODE Models; Dynamic models; Cell -free systems; Butanol production; Parameter optimization; Parameter estimation; Metabolic control analysis; Systems biology; Computational biology; GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE; ESCHERICHIA-COLI; FLUX; BIOSYNTHESIS; OPTIMIZATION; UNCERTAINTY; GLYCOLYSIS; FRAMEWORK; DATABASE; GAS;
D O I
10.1016/j.ymben.2023.01.009
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Cell-free systems are useful tools for prototyping metabolic pathways and optimizing the production of various bioproducts. Mechanistically-based kinetic models are uniquely suited to analyze dynamic experimental data collected from cell-free systems and provide vital qualitative insight. However, to date, dynamic kinetic models have not been applied with rigorous biological constraints or trained on adequate experimental data to the degree that they would give high confidence in predictions and broadly demonstrate the potential for widespread use of such kinetic models. In this work, we construct a large-scale dynamic model of cell-free metabolism with the goal of understanding and optimizing butanol production in a cell-free system. Using a combination of parameterization methods, the resultant model captures experimental metabolite measurements across two experimental conditions for nine metabolites at timepoints between 0 and 24 h. We present analysis of the model predictions, provide recommendations for butanol optimization, and identify the aldehyde/alcohol dehydrogenase as the primary bottleneck in butanol production. Sensitivity analysis further reveals the extent to which various parameters are constrained, and our approach for probing valid parameter ranges can be applied to other modeling efforts.
引用
收藏
页码:133 / 145
页数:13
相关论文
共 78 条
[1]   Engineering Acinetobacter baylyi ADP1 for mevalonate production from lignin-derived aromatic compounds [J].
Arvay, Erika ;
Biggs, Bradley W. ;
Guerrero, Laura ;
Jiang, Virginia ;
Tyo, Keith .
METABOLIC ENGINEERING COMMUNICATIONS, 2021, 13
[2]   Metabolic engineering of Escherichia coli for 1-butanol production [J].
Atsumi, Shota ;
Cann, Anthony F. ;
Connor, Michael R. ;
Shen, Claire R. ;
Smith, Kevin M. ;
Brynildsen, Mark P. ;
Chou, Katherine J. Y. ;
Hanai, Taizo ;
Liao, James C. .
METABOLIC ENGINEERING, 2008, 10 (06) :305-311
[3]   AMIGO2, a toolbox for dynamic modeling, optimization and control in systems biology [J].
Balsa-Canto, Eva ;
Henriques, David ;
Gabor, Attila ;
Banga, Julio R. .
BIOINFORMATICS, 2016, 32 (21) :3357-3359
[4]   eQuilibrator 3.0: a database solution for thermodynamic constant estimation [J].
Beber, Moritz E. ;
Gollub, Mattia G. ;
Mozaffari, Dana ;
Shebek, Kevin M. ;
Flamholz, Avi, I ;
Milo, Ron ;
Noor, Elad .
NUCLEIC ACIDS RESEARCH, 2022, 50 (D1) :D603-D609
[5]   Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli [J].
Bennett, Bryson D. ;
Kimball, Elizabeth H. ;
Gao, Melissa ;
Osterhout, Robin ;
Van Dien, Stephen J. ;
Rabinowitz, Joshua D. .
NATURE CHEMICAL BIOLOGY, 2009, 5 (08) :593-599
[6]   Enabling commercial success of industrial biotechnology [J].
Biggs, Bradley W. ;
Alper, Hal S. ;
Pfleger, Brian F. ;
Tyo, Keith E. J. ;
Santos, Christine N. S. ;
Ajikumar, Parayil Kumaran ;
Stephanopoulos, Gregory .
SCIENCE, 2021, 374 (6575) :1563-1565
[7]   Synthetic Biochemistry: The Bio-inspired Cell-Free Approach to Commodity Chemical Production [J].
Bowie, James U. ;
Sherkhanov, Saken ;
Korman, Tyler P. ;
Valliere, Meaghan A. ;
Opgenorth, Paul H. ;
Liu, Hongjiang .
TRENDS IN BIOTECHNOLOGY, 2020, 38 (07) :766-778
[8]   Capacity for instantaneous catabolism of preferred and non-preferred carbon sources in Escherichia coli and Bacillus subtilis [J].
Buffing, Marieke F. ;
Link, Hannes ;
Christodoulou, Dimitris ;
Sauer, Uwe .
SCIENTIFIC REPORTS, 2018, 8
[9]   Optimization of a blueprint for in vitro glycolysis by metabolic real-time analysis [J].
Bujara, Matthias ;
Schuemperli, Michael ;
Pellaux, Rene ;
Heinemann, Matthias ;
Panke, Sven .
NATURE CHEMICAL BIOLOGY, 2011, 7 (05) :271-277
[10]   USE OF IMPLICIT METHODS FROM GENERAL SENSITIVITY THEORY TO DEVELOP A SYSTEMATIC-APPROACH TO METABOLIC CONTROL .1. UNBRANCHED PATHWAYS [J].
CASCANTE, M ;
FRANCO, R ;
CANELA, EI .
MATHEMATICAL BIOSCIENCES, 1989, 94 (02) :271-288