Comparison and validation of metadta for meta-analysis of diagnostic test accuracy studies

被引:14
作者
Nyaga, Victoria N. [1 ,2 ]
Arbyn, Marc [1 ]
机构
[1] Belgian Canc Ctr, Unit Canc Epidemiol, Brussels, Belgium
[2] Belgian Canc Ctr, Unit Canc Epidemiol, Sciensano, Juliette Wytsmanstr 14, B-1050 Brussels, Belgium
基金
欧盟地平线“2020”;
关键词
diagnostic test accuracy; meta-analysis; metadta; meta-regression; network meta-analysis; Stata; statistical procedure; NETWORK METAANALYSIS; ECOLOGICAL BIAS; RISK RATIOS; REGRESSION; SPECIFICITY; SENSITIVITY; TRIAL;
D O I
10.1002/jrsm.1634
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We developed metadta, a flexible, robust, and user-friendly statistical procedure that fuses established and innovative statistical methods for meta-analysis, meta-regression, and network meta-analysis of diagnostic test accuracy studies in Stata. Using data from published meta-analyses, we validate metadta by comparing and contrasting its features and output to popular procedures dedicated to the meta-analysis of diagnostic test accuracy studies; (midas [Stata], metandi [Stata], metaDTA [web application], mada [R], and MetaDAS [SAS]). We also demonstrate how to perform network meta-analysis with metadta, for which no alternative procedure is dedicated to network meta-analysis of diagnostic test accuracy data in the frequentist framework. metadta generated consistent estimates in simple and complex diagnostic test accuracy data sets. We expect its availability to stimulate better statistical practice in the evidence synthesis of diagnostic test accuracy studies.
引用
收藏
页码:544 / 562
页数:19
相关论文
共 59 条
[1]   Examples in which misspecification of a random effects distribution reduces efficiency, and possible remedies [J].
Agresti, A ;
Caffo, B ;
Ohman-Strickland, P .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2004, 47 (03) :639-653
[2]  
[Anonymous], 2010, User guide version 1.3
[3]  
[Anonymous], 2004, Generalized Latent Variable Modelling
[4]   Human papillomavirus testing versus repeat cytology for triage of minor cytological cervical lesions [J].
Arbyn, Marc ;
Roelens, Jolien ;
Simoens, Cindy ;
Buntinx, Frank ;
Paraskevaidis, Evangelos ;
Martin-Hirsch, Pierre P. L. ;
Prendiville, Walter J. .
COCHRANE DATABASE OF SYSTEMATIC REVIEWS, 2013, (03)
[5]  
Bates D., 2007, J STAT SOFTW, V15, P1
[6]   Fitting Linear Mixed-Effects Models Using lme4 [J].
Bates, Douglas ;
Maechler, Martin ;
Bolker, Benjamin M. ;
Walker, Steven C. .
JOURNAL OF STATISTICAL SOFTWARE, 2015, 67 (01) :1-48
[7]   Individual patient- versus group-level data meta-regressions for the investigation of treatment effect modifiers: ecological bias rears its ugly head [J].
Berlin, JA ;
Santanna, J ;
Schmid, CH ;
Szczech, LA ;
Feldman, HI .
STATISTICS IN MEDICINE, 2002, 21 (03) :371-387
[8]   Estimating Model-Adjusted Risks, Risk Differences, and Risk Ratios From Complex Survey Data [J].
Bieler, Gayle S. ;
Brown, G. Gordon ;
Williams, Rick L. ;
Brogan, Donna J. .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2010, 171 (05) :618-623
[9]   Bivariate meta-analysis of sensitivity and specificity with sparse data: a generalized linear mixed model approach [J].
Chu, Haitao ;
Cole, Stephen R. .
JOURNAL OF CLINICAL EPIDEMIOLOGY, 2006, 59 (12) :1331-1332
[10]  
Deeks JJ., ANAL DATA UNDERTAKIN