Bounded vorticity for the 3D Ginzburg-Landau model and an isoflux problem

被引:1
作者
Roman, Carlos [1 ,2 ]
Sandier, Etienne [3 ,4 ]
Serfaty, Sylvia [5 ]
机构
[1] Pontificia Univ Catolica Chile, Fac Matemat, Santiago, Chile
[2] Pontificia Univ Catolica Chile, Inst Ingn Matemat & Computat, Santiago, Chile
[3] Univ Paris Est Creteil, LAMA, CNRS UMR 8050, Creteil, France
[4] Univ Gustave Eiffel, Creteil, France
[5] NYU, Courant Inst Math Sci, 251 Mercer St, New York, NY 10012 USA
关键词
1ST CRITICAL-FIELD; MINIMIZERS;
D O I
10.1112/plms.12505
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the full three-dimensional Ginzburg-Landau model of superconductivity with applied magnetic field, in the regime where the intensity of the applied field is close to the 'first critical field' Hc1$H_{c_1}$ at which vortex filaments appear, and in the asymptotics of a small inverse Ginzburg-Landau parameter epsilon$\varepsilon$. This onset of vorticity is directly related to an 'isoflux problem' on curves (finding a curve that maximizes the ratio of a magnetic flux by its length), whose study was initiated in [22] and which we continue here. By assuming a nondegeneracy condition for this isoflux problem, which we show holds at least for instance in the case of a ball, we prove that if the intensity of the applied field remains below Hc1+Clog|log epsilon|${H_{c_1}}+ C \log {|\log \varepsilon |}$, the total vorticity remains bounded independently of epsilon$\varepsilon$, with vortex lines concentrating near the maximizer of the isoflux problem, thus extending to the three-dimensional setting a two-dimensional result of [28]. We finish by showing an improved estimate on the value of Hc1${H_{c_1}}$ in some specific simple geometries.
引用
收藏
页码:1015 / 1062
页数:48
相关论文
共 32 条
[1]   Properties of a single vortex solution in a rotating Bose Einstein condensate [J].
Aftalion, A ;
Jerrard, RL .
COMPTES RENDUS MATHEMATIQUE, 2003, 336 (09) :713-718
[2]  
Aftalion A., 2006, VORTICES BOSE EINSTE, V67
[3]   On the Ginzburg-Landau model of a superconducting ball in a uniform field [J].
Alama, S ;
Bronsard, L ;
Montero, JA .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2006, 23 (02) :237-267
[4]   Variational convergence for functionals of Ginzburg-Landau type [J].
Alberti, G ;
Baldo, S ;
Orlandi, G .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2005, 54 (05) :1411-1472
[5]   ON THE GEOMETRY OF GROSS-PITAEVSKI VORTEX CURVES FOR GENERIC DATA [J].
Alberto Montero, Jose ;
Stephens, Benjamin K. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (11) :3871-3881
[6]   Vortex Density Models for Superconductivity and Superfluidity [J].
Baldo, S. ;
Jerrard, R. L. ;
Orlandi, G. ;
Soner, H. M. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 318 (01) :131-171
[7]   THEORY OF SUPERCONDUCTIVITY [J].
BARDEEN, J ;
COOPER, LN ;
SCHRIEFFER, JR .
PHYSICAL REVIEW, 1957, 108 (05) :1175-1204
[8]   Asymptotics for the Ginzburg-Landau equation in arbitrary dimensions [J].
Bethuel, F ;
Brezis, H ;
Orlandi, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 186 (02) :432-520
[9]  
Bethuel F., 1994, GINZBURG LANDAU VORT, V13
[10]   Nearly Parallel Vortex Filaments in the 3D Ginzburg-Landau Equations [J].
Contreras, Andres ;
Jerrard, Robert L. .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2017, 27 (05) :1161-1230