Strong generalization in quantum neural networks

被引:1
作者
Jiang, Jinzhe [1 ,2 ]
Zhao, Yaqian [1 ,2 ]
Li, Rengang [1 ,2 ]
Li, Chen [1 ,2 ]
Guo, Zhenhua [1 ,2 ]
Fan, Baoyu [1 ,2 ]
Li, Xuelei [1 ,2 ]
Li, Ruyang [1 ,2 ]
Zhang, Xin [1 ,2 ]
机构
[1] Inspur Elect Informat Ind Co Ltd, Jinan, Peoples R China
[2] Inspur Beijing Elect Informat Ind Co Ltd, Beijing, Peoples R China
关键词
Neural network; Quantum neural networks; Generalization; Classification;
D O I
10.1007/s11128-023-04095-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Generalization is an important feature of neural networks (Nns) as it indicates their ability to predict new and unknown data. However, classical Nns face the challenge of overcoming overfitting in applications due to their nonlinear characteristics, which represents poor generalization. By combining quantum computing with Nns, quantum neural networks (Qnns) have more potential than classical Nns. In this work, we study the generalization of Qnns and compare it with classical Nns. We prove that Qnns have a generalization error bound and propose its theoretical value. We also show that Qnns perform almost the same on the training dataset and test dataset without the overfitting phenomenon. To validate our proposal, we simulate three Qnn models on two public datasets and compare them with a traditional network model. The results demonstrate that Qnns have ideal generalization, much better than classical Nns. Finally, we implement the experiment on a quantum processor to prove the simulation's results.
引用
收藏
页数:12
相关论文
共 35 条
[1]   The power of quantum neural networks [J].
Abbas, Amira ;
Sutter, David ;
Zoufal, Christa ;
Lucchi, Aurelien ;
Figalli, Alessio ;
Woerner, Stefan .
NATURE COMPUTATIONAL SCIENCE, 2021, 1 (06) :403-409
[2]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[3]   Training deep quantum neural networks [J].
Beer, Kerstin ;
Bondarenko, Dmytro ;
Farrelly, Terry ;
Osborne, Tobias J. ;
Salzmann, Robert ;
Scheiermann, Daniel ;
Wolf, Ramona .
NATURE COMMUNICATIONS, 2020, 11 (01)
[4]   Quantum machine learning [J].
Biamonte, Jacob ;
Wittek, Peter ;
Pancotti, Nicola ;
Rebentrost, Patrick ;
Wiebe, Nathan ;
Lloyd, Seth .
NATURE, 2017, 549 (7671) :195-202
[5]  
Bishop Christopher M., 2006, Pattern recognition and machine learning
[6]   Generalization in quantum machine learning from few training data [J].
Caro, Matthias C. ;
Huang, Hsin-Yuan ;
Cerezo, M. ;
Sharma, Kunal ;
Sornborger, Andrew ;
Cincio, Lukasz ;
Coles, Patrick J. .
NATURE COMMUNICATIONS, 2022, 13 (01)
[7]   Cost function dependent barren plateaus in shallow parametrized quantum circuits [J].
Cerezo, M. ;
Sone, Akira ;
Volkoff, Tyler ;
Cincio, Lukasz ;
Coles, Patrick J. .
NATURE COMMUNICATIONS, 2021, 12 (01)
[8]   Quantum convolutional neural networks [J].
Cong, Iris ;
Choi, Soonwon ;
Lukin, Mikhail D. .
NATURE PHYSICS, 2019, 15 (12) :1273-+
[9]  
Dendukuri A, 2020, Arxiv, DOI [arXiv:1905.10912, 10.48550/arXiv.1905.10912, DOI 10.48550/ARXIV.1905.10912]
[10]   v Machine learning & artificial intelligence in the quantum domain: a review of recent progress [J].
Dunjko, Vedran ;
Briegel, Hans J. .
REPORTS ON PROGRESS IN PHYSICS, 2018, 81 (07)