Simultaneous effects of hydrostatic pressure and temperature on the electronic spectrum in the presence of a single off-center donor atom in a hemi-quantum ring

被引:8
作者
Boussetta, R. [1 ]
Mommadi, O. [1 ,2 ,5 ]
Chouef, S. [2 ]
Belamkadem, L. [2 ]
Hbibi, M. [2 ]
El Moussaouy, A. [2 ,3 ]
Vinasco, J. A. [4 ]
Duque, C. A. [4 ]
El-Miad, A. Kerkour [1 ]
机构
[1] Univ Mohamed I, Fac Sci, Dept Phys, Lab Mat Waves Energy & Environm,MEGCE Grp, Oujda 60000, Morocco
[2] Univ Mohamed I, Fac Sci, Dept Phys, OAPM Grp,Lab Mat Waves Energy & Environm, Oujda 60000, Morocco
[3] CRMEF, Lab Innovat Sci Technol & Educ, Oujda 60000, Morocco
[4] Univ Antioquia UdeA, Fac Ciencias Exactas & Nat, Inst Fis, Grp Mat Condensada UdeA, Calle 70 52-21, Medellin, Colombia
[5] BV Mohammed VI BP 524, Oujda 60000, Morocco
关键词
Hemi-quantum ring; Bending energy; Transition energies; Hydrostatic pressure; Temperature; NONLINEAR-OPTICAL PROPERTIES; HYDROGENIC IMPURITY; BINDING-ENERGY; DOTS; FIELD; STATES;
D O I
10.1016/j.physb.2023.415009
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
This study numerically investigates the electronic and donor atom properties of an electron and off-center donor atom confined in a hemi-quantum-ring (HQR) using the effective mass approximation and an infinite confinement potential. The Schrodinger equation is solved using finite element and difference methods to obtain the system's eigenenergies and eigenfunctions. The study examines the influence of the electronic spectrum under the simultaneous effects of HQR sizes, temperature, and hydrostatic pressure applied to three directions Rg, Rc, and '0. Additionally, the influence of donor displacement on binding and donor energies is evaluated. The numerical results show that the electronic and binding energies are highly sensitive to the size of the HQR nanostructure. Furthermore, the study found that the donor atom displacement can control the variation of binding energy and donor energy for different values of hydrostatic pressure and temperature, such as the pressure (temperature) contribution increases (decreases) the binding energy. Also, the hydrostatic pressure (temperature) applied leads to a decrease (increase) of the first four confined state energies and donor energy. The simultaneous influence of geometrical parameters, hydrostatic pressure, and temperature can help improve the efficiency of electronic devices.
引用
收藏
页数:12
相关论文
共 58 条
[1]  
Al E.B., 2021, BINDING ENERGY ABSOR, P0
[2]   Aharonov-Bohm quantum rings in high-Q microcavities [J].
Alexeev, A. M. ;
Shelykh, I. A. ;
Portnoi, M. E. .
PHYSICAL REVIEW B, 2013, 88 (08)
[3]   Electric dipole moment oscillations in Aharonov-Bohm quantum rings [J].
Alexeev, A. M. ;
Portnoi, M. E. .
PHYSICAL REVIEW B, 2012, 85 (24)
[4]   Thermal and magnetic properties of electron gas in toroidal quantum dot [J].
Baghdasaryan, D. A. ;
Hayrapetyan, D. B. ;
Kazaryan, E. M. ;
Sarkisyan, H. A. .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2018, 101 :1-4
[5]   Electric field and impurity effect on nonlinear optical rectification of a double cone like quantum dot [J].
Bahramiyan, H. .
OPTICAL MATERIALS, 2018, 75 :187-195
[6]   Heralded generation of entangled photon pairs [J].
Barz, Stefanie ;
Cronenberg, Gunther ;
Zeilinger, Anton ;
Walther, Philip .
NATURE PHOTONICS, 2010, 4 (08) :553-556
[7]   Optical detection of the Aharonov-Bohm effect on a charged particle in a nanoscale quantum ring [J].
Bayer, M ;
Korkusinski, M ;
Hawrylak, P ;
Gutbrod, T ;
Michel, M ;
Forchel, A .
PHYSICAL REVIEW LETTERS, 2003, 90 (18) :4-186801
[8]   Electronic properties and hydrogenic impurity binding energy of a new variant quantum dot [J].
Belamkadem, L. ;
Mommadi, O. ;
Vinasco, J. A. ;
Laroze, D. ;
El Moussaouy, A. ;
Chnafi, M. ;
Duque, C. A. .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2021, 129
[9]  
Belamkadem L., 2023, J COMPUT ELECTRON, P1572
[10]   Simultaneous influence of hydrostatic pressure and temperature on binding energy of impurity doped quantum dots in presence of noise [J].
Bera, Aindrila ;
Ghosh, Manas .
JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 695 :3054-3060