ON THE CONVERGENCE OF DISCONTINUOUS GALERKIN/HERMITE SPECTRAL METHODS FOR THE VLASOV-POISSON SYSTEM

被引:4
作者
Bessemoulin-Chatard, Marianne [1 ]
Filbet, Francis [2 ]
机构
[1] Nantes Univ, CNRS, Lab Math Jean Leray, UMR6629 2, F-44322 Nantes 3, France
[2] Univ Paul Sabatier, Inst Math Toulouse, UMR5219, F-31062 Toulouse, France
关键词
convergence; discontinuous Galerkin method; Hermite spectral method; Vlasov-Poisson; FINITE-ELEMENT CODE; NUMERICAL-INTEGRATION; SIMULATION; CONSERVATION; PROPAGATION; EQUATIONS; SCHEMES; PLASMAS; BEAMS;
D O I
10.1137/22M1518232
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the convergence of discontinuous Galerkin approximations for the VlasovPoisson system written as a hyperbolic system using Hermite polynomials in velocity. To obtain stability properties, we introduce a suitable weighted L2 space, with a time-dependent weight, and first prove global stability for the weighted L2 norm and propagation of regularity. Then we prove error estimates between the numerical solution and the smooth solution to the Vlasov-Poisson system.
引用
收藏
页码:1664 / 1688
页数:25
相关论文
共 40 条
[1]   NUMERICAL STUDIES OF NONLINEAR VLASOV EQUATION [J].
ARMSTRONG, TP .
PHYSICS OF FLUIDS, 1967, 10 (06) :1269-+
[2]   DISCONTINUOUS GALERKIN METHODS FOR THE ONE-DIMENSIONAL VLASOV-POISSON SYSTEM [J].
Ayuso, Blanca ;
Carrillo, Jose A. ;
Shu, Chi-Wang .
KINETIC AND RELATED MODELS, 2011, 4 (04) :955-989
[3]   DISCONTINUOUS GALERKIN METHODS FOR THE MULTI-DIMENSIONAL VLASOV-POISSON PROBLEM [J].
Ayuso De Dios, Blanca ;
Carrillo, Jose A. ;
Shu, Chi-Wang .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2012, 22 (12)
[4]   Convergence of a high-order semi-lagrangian scheme with propagation of gradients for the one-dimensional Vlasov-Poisson system [J].
Besse, Nicolas .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (02) :639-670
[5]   On the stability of conservative discontinuous Galerkin/Hermite spectral methods for the Vlasov-Poisson system [J].
Bessemoulin-Chatard, Marianne ;
Filbet, Francis .
JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 451
[6]  
Birdsall C.K., 1985, Plasma Physics via Computer Simulation
[7]   On the velocity space discretization for the Vlasov-Poisson system: Comparison between implicit Hermite spectral and Particle-in-Cell methods [J].
Camporeale, E. ;
Delzanno, G. L. ;
Bergen, B. K. ;
Moulton, J. D. .
COMPUTER PHYSICS COMMUNICATIONS, 2016, 198 :47-58
[8]   ENHANCED CONVERGENCE ESTIMATES FOR SEMI-LAGRANGIAN SCHEMES APPLICATION TO THE VLASOV-POISSON EQUATION [J].
Charles, Frederique ;
Despres, Bruno ;
Mehrenberger, Michel .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (02) :840-863
[9]   Study of conservation and recurrence of Runge-Kutta discontinuous Galerkin schemes for Vlasov-Poisson systems [J].
Cheng, Yingda ;
Gamba, Irene M. ;
Morrison, Philip J. .
JOURNAL OF SCIENTIFIC COMPUTING, 2013, 56 (02) :319-349
[10]   Filtered Hyperbolic Moment Method for the Vlasov Equation [J].
Di, Yana ;
Fan, Yuwei ;
Kou, Zhenzhong ;
Li, Ruo ;
Wang, Yanli .
JOURNAL OF SCIENTIFIC COMPUTING, 2019, 79 (02) :969-991