Cellulose-based laser-induced graphene devices for electrochemical monitoring of bacterial phenazine production and viability

被引:11
作者
Butler, Derrick [1 ,2 ]
Kammarchedu, Vinay [1 ,2 ,3 ]
Zhou, Keren [1 ]
Peeke, Lachlan [4 ,5 ]
Lyle, Luke [4 ,5 ]
Snyder, David W. [4 ,5 ,6 ]
Ebrahimi, Aida [1 ,2 ,3 ,7 ]
机构
[1] Penn State Univ, Dept Elect Engn, University Pk, PA 16802 USA
[2] Penn State Univ, Ctr Atom Thin Multifunct Coatings, University Pk, PA 16802 USA
[3] Penn State Univ, Ctr Biodevices, University Pk, PA 16802 USA
[4] Penn State Univ, Elect Mat & Devices Dept, Appl Res Lab, University Pk, PA 16802 USA
[5] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[6] Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA
[7] Penn State Univ, Dept Biomed Engn, University Pk, PA 16802 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Cellulose; Paper-based analytical device; Laser-induced graphene; Bacteria; Viability; Phenazine; RAMAN-SPECTROSCOPY; PAPER; ELECTRODE; CARBON;
D O I
10.1016/j.snb.2022.133090
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
As an easily disposable substrate with a microporous texture, paper is a well-suited, generic substrate to build analytical devices for studying bacteria. Using a multi-pass lasing process, cellulose-based laser-induced graphene (cLIG) with a sheet resistance of 43.7 +/- 2.3 omega sq-1 is developed and utilized in the fabrication of low-cost and environmentally-friendly paper-based sensor arrays. Two case studies with Pseudomonas aeruginosa and Escherichia coli demonstrate the practicality of the cLIG sensors for the electrochemical analysis of bacteria. The first study measures the time-dependent profile of phenazines, such as pyocyanin, released from both planktonic (up to 60 h) and on-chip-grown (up to 22 h) Pseudomonas aeruginosa cultures. While similarities do exist, marked differences in phenazine production are seen with cells grown directly on cLIG compared to the planktonic culture. Moreover, in planktonic cultures, pyocyanin levels increase early on and plateau around 20 h, while optical density measurements increase monotonically over the duration of testing. The second study monitors the viability and metabolic activity of Escherichia coli using a resazurin-based electrochemical assay. These results demonstrate the utility of cLIG-based sensors as an inexpensive and versatile platform for monitoring bacteria and could enable new opportunities in high-throughput antibiotic susceptibility testing, ecological studies, and biofilm studies.
引用
收藏
页数:12
相关论文
共 78 条
[1]   Observation of Gravitational Waves from a Binary Black Hole Merger [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abernathy, M. R. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, B. ;
Allocca, A. ;
Altin, P. A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Arai, K. ;
Arain, M. A. ;
Araya, M. C. ;
Arceneaux, C. C. ;
Areeda, J. S. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Ast, M. ;
Aston, S. M. ;
Astone, P. ;
Aufmuth, P. ;
Aulbert, C. ;
Babak, S. ;
Bacon, P. ;
Bader, M. K. M. ;
Baker, P. T. ;
Baldaccini, F. ;
Ballardin, G. ;
Ballmer, S. W. ;
Barayoga, J. C. ;
Barclay, S. E. ;
Barish, B. C. ;
Barker, D. ;
Barone, F. .
PHYSICAL REVIEW LETTERS, 2016, 116 (06)
[2]   Colorimetric and Electrochemical Bacteria Detection Using Printed Paper- and Transparency-Based Analytic Devices [J].
Adkins, Jaclyn A. ;
Boehle, Katherine ;
Friend, Colin ;
Chamberlain, Briana ;
Bisha, Bledar ;
Henry, Charles S. .
ANALYTICAL CHEMISTRY, 2017, 89 (06) :3613-3621
[3]   Status and Prospects of Laser-Induced Graphene for Battery Applications [J].
Alhajji, Eman ;
Zhang, Fan ;
Alshareef, Husam N. .
ENERGY TECHNOLOGY, 2021, 9 (10)
[4]   Engineering strategies for enhancing the performance of electrochemical paper-based analytical devices [J].
Baharfar, Mahroo ;
Rahbar, Mohammad ;
Tajik, Mohammad ;
Liu, Guozhen .
BIOSENSORS & BIOELECTRONICS, 2020, 167
[5]  
Bard A.J., 2022, ELECTROCHEMICAL METH
[6]   Electrochemical camera chip for simultaneous imaging of multiple metabolites in biofilms [J].
Bellin, Daniel L. ;
Sakhtah, Hassan ;
Zhang, Yihan ;
Price-Whelan, Alexa ;
Dietrich, Lars E. P. ;
Shepard, Kenneth L. .
NATURE COMMUNICATIONS, 2016, 7
[7]   Integrated circuit-based electrochemical sensor for spatially resolved detection of redox-active metabolites in biofilms [J].
Bellin, Daniel L. ;
Sakhtah, Hassan ;
Rosenstein, Jacob K. ;
Levine, Peter M. ;
Thimot, Jordan ;
Emmett, Kevin ;
Dietrich, Lars E. P. ;
Shepard, Kenneth L. .
NATURE COMMUNICATIONS, 2014, 5 :3256
[8]   Rapid electrochemical phenotypic profiling of antibiotic-resistant bacteria [J].
Besant, Justin D. ;
Sargent, Edward H. ;
Kelley, Shana O. .
LAB ON A CHIP, 2015, 15 (13) :2799-2807
[9]   Development of a paper-based electrochemical immunosensor using an antibody-single walled carbon nanotubes bio-conjugate modified electrode for label-free detection of foodborne pathogens [J].
Bhardwaj, Jyoti ;
Devarakonda, Sivaranjani ;
Kumar, Suveen ;
Jang, Jaesung .
SENSORS AND ACTUATORS B-CHEMICAL, 2017, 253 :115-123
[10]   Disposable Paper-Based Biosensors: Optimizing the Electrochemical Properties of Laser-Induced Graphene [J].
Bhattacharya, Gourav ;
Fishlock, Sam J. ;
Hussain, Shahzad ;
Choudhury, Sudipta ;
Xiang, Annan ;
Kandola, Baljinder ;
Pritam, Anurag ;
Soin, Navneet ;
Roy, Susanta Sinha ;
McLaughlin, James A. .
ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (27) :31109-31120