Data-Driven Compound Identification in Atmospheric Mass Spectrometry

被引:5
作者
Sandstrom, Hilda [1 ]
Rissanen, Matti [2 ,3 ]
Rousu, Juho [4 ]
Rinke, Patrick [1 ]
机构
[1] Aalto Univ, Dept Appl Phys, POB 11000, FI-00076 Aalto, Espoo, Finland
[2] Tampere Univ, Aerosol Phys Lab, FI-33720 Tampere, Finland
[3] Univ Helsinki, Dept Chem, POB 55,AI Virtasen Aukio 1, FI-00560 Helsinki, Finland
[4] Aalto Univ, Dept Comp Sci, POB 11000, FI-00076 Aalto, Espoo, Finland
基金
欧洲研究理事会; 芬兰科学院;
关键词
aerosol; database; machine learning; mass spectrometry; open science; SECONDARY ORGANIC AEROSOL; MOLECULAR FORMULA ANNOTATION; PRESSURE CHEMICAL-IONIZATION; VOLATILITY BASIS-SET; METABOLITE IDENTIFICATION; SULFURIC-ACID; UNCERTAINTY QUANTIFICATION; ELECTRON IONIZATION; PARTICLE FORMATION; GAS;
D O I
10.1002/advs.202306235
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Aerosol particles found in the atmosphere affect the climate and worsen air quality. To mitigate these adverse impacts, aerosol particle formation and aerosol chemistry in the atmosphere need to be better mapped out and understood. Currently, mass spectrometry is the single most important analytical technique in atmospheric chemistry and is used to track and identify compounds and processes. Large amounts of data are collected in each measurement of current time-of-flight and orbitrap mass spectrometers using modern rapid data acquisition practices. However, compound identification remains a major bottleneck during data analysis due to lacking reference libraries and analysis tools. Data-driven compound identification approaches could alleviate the problem, yet remain rare to non-existent in atmospheric science. In this perspective, the authors review the current state of data-driven compound identification with mass spectrometry in atmospheric science and discuss current challenges and possible future steps toward a digital era for atmospheric mass spectrometry. Enhancing the understanding of atmospheric processes necessitates fast and precise atmospheric compound identification. Mass spectrometry enables this in field and laboratory settings. Digitizing identification protocols may expedite new compound discovery, but success relies on having access to relevant reference standards. Initiating a digital era in atmospheric mass spectrometry requires establishing a collaborative, open data infrastructure and concurrently developing data-driven methods.image
引用
收藏
页数:17
相关论文
共 182 条
[1]   Application of Modern Online Instrumentation for Chemical Analysis of Gas and Particulate Phases of Exhaust at the European Commission Heavy-Duty Vehicle Emission Laboratory [J].
Adam, T. W. ;
Chirico, R. ;
Clairotte, M. ;
Elsasser, M. ;
Manfredi, U. ;
Martini, G. ;
Sklorz, M. ;
Streibel, T. ;
Heringa, M. F. ;
DeCarlo, P. F. ;
Baltensperger, U. ;
De Santi, G. ;
Krasenbrink, A. ;
Zimmermann, R. ;
Prevot, A. S. H. ;
Astorga, C. .
ANALYTICAL CHEMISTRY, 2011, 83 (01) :67-76
[2]   Constructing a data-driven receptor model for organic and inorganic aerosol - a synthesis analysis of eight mass spectrometric data sets from a boreal forest site [J].
Aijala, Mikko ;
Daellenbach, Kaspar R. ;
Canonaco, Francesco ;
Heikkinen, Liine ;
Junninen, Heikki ;
Petaja, Tuukka ;
Kulmala, Markku ;
Prevot, Andre S. H. ;
Ehn, Mikael .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2019, 19 (06) :3645-3672
[3]   Competitive fragmentation modeling of ESI-MS/MS spectra for putative metabolite identification [J].
Allen, Felicity ;
Greiner, Russ ;
Wishart, David .
METABOLOMICS, 2015, 11 (01) :98-110
[4]   CFM-ID: a web server for annotation, spectrum prediction and metabolite identification from tandem mass spectra [J].
Allen, Felicity ;
Pon, Allison ;
Wilson, Michael ;
Greiner, Russ ;
Wishart, David .
NUCLEIC ACIDS RESEARCH, 2014, 42 (W1) :W94-W99
[5]   Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere [J].
Almeida, Joao ;
Schobesberger, Siegfried ;
Kuerten, Andreas ;
Ortega, Ismael K. ;
Kupiainen-Maatta, Oona ;
Praplan, Arnaud P. ;
Adamov, Alexey ;
Amorim, Antonio ;
Bianchi, Federico ;
Breitenlechner, Martin ;
David, Andre ;
Dommen, Josef ;
Donahue, Neil M. ;
Downard, Andrew ;
Dunne, Eimear ;
Duplissy, Jonathan ;
Ehrhart, Sebastian ;
Flagan, Richard C. ;
Franchin, Alessandro ;
Guida, Roberto ;
Hakala, Jani ;
Hansel, Armin ;
Heinritzi, Martin ;
Henschel, Henning ;
Jokinen, Tuija ;
Junninen, Heikki ;
Kajos, Maija ;
Kangasluoma, Juha ;
Keskinen, Helmi ;
Kupc, Agnieszka ;
Kurten, Theo ;
Kvashin, Alexander N. ;
Laaksonen, Ari ;
Lehtipalo, Katrianne ;
Leiminger, Markus ;
Leppa, Johannes ;
Loukonen, Ville ;
Makhmutov, Vladimir ;
Mathot, Serge ;
McGrath, Matthew J. ;
Nieminen, Tuomo ;
Olenius, Tinja ;
Onnela, Antti ;
Petaja, Tuukka ;
Riccobono, Francesco ;
Riipinen, Ilona ;
Rissanen, Matti ;
Rondo, Linda ;
Ruuskanen, Taina ;
Santos, Filipe D. .
NATURE, 2013, 502 (7471) :359-+
[6]  
[Anonymous], 2000, Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications
[7]   Joint structural annotation of small molecules using liquid chromatography retention order and tandem mass spectrometry data [J].
Bach, Eric ;
Schymanski, Emma L. ;
Rousu, Juho .
NATURE MACHINE INTELLIGENCE, 2022, 4 (12) :1224-+
[8]   Liquid-chromatography retention order prediction for metabolite identification [J].
Bach, Eric ;
Szedmak, Sandor ;
Brouard, Celine ;
Boecker, Sebastian ;
Rousu, Juho .
BIOINFORMATICS, 2018, 34 (17) :875-883
[9]   Atmospheric pressure photoionization study of post-translational modifications: The case of palmitoylation [J].
Bagag, Aicha ;
Giuliani, Alexandre ;
Refregiers, Matthieu ;
Le Naour, Francois .
INTERNATIONAL JOURNAL OF MASS SPECTROMETRY, 2012, 328 :23-27
[10]   Perspectives on Data Analysis in Metabolomics: Points of Agreement and Disagreement from the 2018 ASMS Fall Workshop [J].
Baker, Erin S. ;
Patti, Gary J. .
JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2019, 30 (10) :2031-2036