Multifunctional molecule interface modification for high-performance inverted wide-bandgap perovskite cells and modules

被引:26
|
作者
Yang, Yang [1 ]
Chang, Qing [3 ]
Yang, Yuyao [1 ]
Jiang, Yuhui [1 ]
Dai, Zhiyuan [1 ]
Huang, Xiaofeng [3 ]
Huo, Jiangwei [1 ]
Guo, Pengfei [1 ]
Shen, Hui [4 ]
Liu, Zhe [1 ]
Chen, Ruihao [1 ,2 ,5 ]
Wang, Hongqiang [1 ,2 ]
机构
[1] Northwestern Polytech Univ, Ctr Nano Energy Mat, Sch Mat Sci & Engn, State Key Lab Solidificat Proc, Xian 710072, Peoples R China
[2] Northwestern Polytech Univ, Chongqing Innovat Ctr, Chongqing 401135, Peoples R China
[3] Xiamen Univ, Pen Tung Sah Inst Micronano Sci & Technol, Coll Chemistryand Chem Engn, Xiamen 361005, Peoples R China
[4] Inner Mongolia Univ, Coll Energy Mat & Chem, Hohhot 010021, Peoples R China
[5] Northwestern Polytech Univ Shenzhen, Res & Dev Inst, Shenzhen 518063, Peoples R China
基金
中国国家自然科学基金;
关键词
SOLAR-CELLS; HALIDE PEROVSKITES; PASSIVATION; STABILITY;
D O I
10.1039/d3ta02209a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Wide-band gap (& GE;1.66 eV) inverted perovskite solar cells (PSCs) are important portions of tandem silicon/PSCs. However, the poor efficiency and phase stability are still unresolved and blocking the industrialization of the scalable inverted PSCs. An interface modification strategy was developed using a multifunctional molecule, pyridinyl-benzimidazolium chloride to stabilize the perovskite surface. The pyridine and benzimidazole groups can fulfill halide vacancies, saturate the uncoordinated Pb2+ sites, and bond with formamidinium/methylammonium cations. Benefitting from the interface defect passivation, reduced nonradiative recombination, and effective suppression of halide phase separation, a champion efficiency of 21.82% with a high V-oc of 1.24 V in the fabricated inverted-small-area PSCs was achieved at the 1.67 eV-bandgap perovskite. The unsealed PSCs presented high light stability and excellent storage stability of over 2000 h. The semitransparent mini-modules were also successfully fabricated with high efficiency of 18.05% at a 1.92 cm(2) active area. This multifunctional defect passivation strategy provides an important avenue for high-performance perovskite top cells for tandem photovoltaics.
引用
收藏
页码:16871 / 16877
页数:7
相关论文
共 50 条
  • [1] Homogenizing the Halogen Distribution via a Multifunctional Fluorine-Containing Additive Toward High-Performance Inverted Wide-Bandgap Perovskite Solar Cells
    Li, Jiawen
    Zhu, Shaofeng
    Yin, Chunyang
    Chen, Cong
    Yuan, Jun
    Zhao, Haifeng
    Gong, Hongkang
    Yang, Bo
    Zheng, Ding
    Xing, Guoqiang
    Zhao, Dewei
    Yu, Junsheng
    Bai, Sai
    ADVANCED FUNCTIONAL MATERIALS, 2025,
  • [2] Passivation of Sodium Benzenesulfonate at the Buried Interface of a High-Performance Wide-Bandgap Perovskite Solar Cell
    La, Sijia
    Mo, Yaqi
    Li, Xing
    Feng, Xuzheng
    Chen, Xianggang
    Li, Zhuoxin
    Yang, Miao
    Ren, Dongxu
    Liu, Shuyi
    Cui, Xiaoxia
    Chen, Jieqiong
    Zhang, Zhao
    Yuan, Zhengbo
    Cai, Molang
    MATERIALS, 2024, 17 (07)
  • [3] Buried organic interlayer for high-performance and stable wide-bandgap perovskite solar cells
    Kim, Haeun
    Lee, Soo Yeon
    Park, Hansol
    Heo, Jihyeon
    Kim, Hakjun
    Kim, Yoonsung
    Prayogo, Juan Anthony
    Kim, Young-Hoon
    Whang, Dong Ryeol
    Chang, Dong Wook
    Park, Hui Joon
    CHEMICAL ENGINEERING JOURNAL, 2025, 509
  • [4] Interface Regulation by an Ultrathin Wide-Bandgap Halide for Stable and Efficient Inverted Perovskite Solar Cells
    Sun, Qing
    Zong, Beibei
    Meng, Xiangxin
    Shen, Bo
    Li, Xu
    Kang, Bonan
    Silva, S. Ravi P.
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (05) : 6702 - 6713
  • [5] High-Performance, Wide-Bandgap Power Electronics
    Ty McNutt
    Brandon Passmore
    John Fraley
    Brice McPherson
    Robert Shaw
    Kraig Olejniczak
    Alex Lostetter
    Journal of Electronic Materials, 2014, 43 : 4552 - 4559
  • [6] High-Performance, Wide-Bandgap Power Electronics
    McNutt, Ty
    Passmore, Brandon
    Fraley, John
    Mcpherson, Brice
    Shaw, Robert
    Olejniczak, Kraig
    Lostetter, Alex
    JOURNAL OF ELECTRONIC MATERIALS, 2014, 43 (12) : 4552 - 4559
  • [7] Contact Potential Homogenization via Buried Interface Engineering Enables High-Performance Wide-Bandgap Perovskite Photovoltaics
    Guo, Yaxiong
    Du, Shengjie
    Chen, Weiqing
    Zhou, Hai
    Chen, Guoyi
    Wang, Shuxin
    Yu, Zixi
    Hu, Xuzhi
    Yao, Fang
    Li, Chun
    Ke, Weijun
    Fang, Guojia
    ADVANCED FUNCTIONAL MATERIALS, 2025,
  • [8] Surface repair of wide-bandgap perovskites for high-performance all-perovskite tandem solar cells
    Lv, Xiaojing
    Li, Weisheng
    Zhang, Jin
    Yang, Yujie
    Jia, Xuefei
    Ji, Yitong
    Lin, Qianqian
    Huang, Wenchao
    Bu, Tongle
    Ren, Zhiwei
    Yao, Canglang
    Huang, Fuzhi
    Cheng, Yi-Bing
    Tong, Jinhui
    JOURNAL OF ENERGY CHEMISTRY, 2024, 93 : 64 - 70
  • [9] Surface repair of wide-bandgap perovskites for high-performance all-perovskite tandem solar cells
    Xiaojing Lv
    Weisheng Li
    Jin Zhang
    Yujie Yang
    Xuefei Jia
    Yitong Ji
    Qianqian Lin
    Wenchao Huang
    Tongle Bu
    Zhiwei Ren
    Canglang Yao
    Fuzhi Huang
    Yi-Bing Cheng
    Jinhui Tong
    Journal of Energy Chemistry , 2024, (06) : 64 - 70
  • [10] Passivator-Assisted Close Space Annealing for High-Performance Wide-Bandgap Perovskite Solar Cells
    Zhao, Yue
    Ma, Tianshu
    Liu, Tingting
    Zhou, Luwei
    Wu, Zhanghao
    Chen, Chen
    Liu, Yuhui
    Chen, Cong
    Ma, Dong
    Qin, Linling
    Zhao, Dewei
    Wang, Changlei
    Li, Xiaofeng
    SOLAR RRL, 2024, 8 (21)