Parametric topological entropy of families of multivalued maps in topological spaces and induced hyperspace maps

被引:4
作者
Andres, Jan [1 ]
Ludvik, Pavel [1 ]
机构
[1] Palacky Univ, Fac Sci, Dept Math Anal & Applicat Math, 17 Listopadu 12, Olomouc 77146, Czech Republic
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2023年 / 125卷
关键词
Parametric topological entropy; Multivalued nonautonomous maps; Topological Hausdorff spaces; Hyperspaces; Induced hypermaps; CHAOS;
D O I
10.1016/j.cnsns.2023.107395
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A positive parametric topological entropy is examined whether or not it is preserved from given continuous maps to the induced hyperspace maps. An established affirma-tive answer generalizes all the related results obtained in this field so far, because the continuous maps under consideration can be multivalued and nonautonomous (time-dependent) in compact topological Hausdorff spaces. A variety of definitions of parametric topological entropy for multivalued maps is investigated, together with their properties. Several simple illustrative examples are supplied.& COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:16
相关论文
共 40 条
[1]   TOPOLOGICAL ENTROPY [J].
ADLER, RL ;
KONHEIM, AG ;
MCANDREW, MH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 114 (02) :309-&
[2]   Topological entropy of Markov set-valued functions [J].
Alvin, Lori ;
Kelly, James P. .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2021, 41 (02) :321-337
[3]   Topological entropy of multivalued maps in topological spaces and hyperspaces [J].
Andres, Jan ;
Ludvik, Pavel .
CHAOS SOLITONS & FRACTALS, 2022, 160
[4]   Parametric topological entropy and differential equations with time-dependent impulses [J].
Andres, Jan .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 317 :365-386
[5]   Chaos for multivalued maps and induced hyperspace maps [J].
Andres, Jan .
CHAOS SOLITONS & FRACTALS, 2020, 138
[6]  
Balibrea F, 2016, APPL MATH NONLIN SCI, V1, P391, DOI [10.21042/amns.2016.2.00034, DOI 10.21042/AMNS.2016.2.00034, 10.21042/AMNS.2016.2.00034]
[7]   Weak mixing and chaos in nonautonomous discrete systems [J].
Balibrea, Francisco ;
Oprocha, Piotr .
APPLIED MATHEMATICS LETTERS, 2012, 25 (08) :1135-1141
[8]   TOPOLOGICAL DYNAMICS OF TRANSFORMATIONS INDUCED ON SPACE OF PROBABILITY MEASURES [J].
BAUER, W ;
SIGMUND, K .
MONATSHEFTE FUR MATHEMATIK, 1975, 79 (02) :81-92
[9]  
Bourbaki Nicolas., 1998, Elements of Mathematics (Berlin)