Zero-shot cross-lingual transfer language selection using linguistic similarity

被引:12
|
作者
Eronen, Juuso [1 ]
Ptaszynski, Michal [1 ]
Masui, Fumito [1 ]
机构
[1] Kitami Inst Technol, 165 Koencho, Kitami, Hokkaido 0900015, Japan
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
Multilingual natural language processing; Zero-shot learning; Transfer learning; Linguistics; Language similarity;
D O I
10.1016/j.ipm.2022.103250
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study the selection of transfer languages for different Natural Language Processing tasks, specifically sentiment analysis, named entity recognition and dependency parsing. In order to select an optimal transfer language, we propose to utilize different linguistic similarity metrics to measure the distance between languages and make the choice of transfer language based on this information instead of relying on intuition. We demonstrate that linguistic similarity correlates with cross-lingual transfer performance for all of the proposed tasks. We also show that there is a statistically significant difference in choosing the optimal language as the transfer source instead of English. This allows us to select a more suitable transfer language which can be used to better leverage knowledge from high-resource languages in order to improve the performance of language applications lacking data. For the study, we used datasets from eight different languages from three language families.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Transfer language selection for zero-shot cross-lingual abusive language detection
    Eronen, Juuso
    Ptaszynski, Michal
    Masui, Fumito
    Arata, Masaki
    Leliwa, Gniewosz
    Wroczynski, Michal
    INFORMATION PROCESSING & MANAGEMENT, 2022, 59 (04)
  • [2] Zero-Shot Cross-Lingual Transfer in Legal Domain Using Transformer Models
    Shaheen, Zein
    Wohlgenannt, Gerhard
    Mouromtsev, Dmitry
    2021 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI 2021), 2021, : 450 - 456
  • [3] Curriculum meta-learning for zero-shot cross-lingual transfer
    Doan, Toan
    Le, Bac
    KNOWLEDGE-BASED SYSTEMS, 2024, 301
  • [4] Towards zero-shot cross-lingual named entity disambiguation
    Barrena, Ander
    Soroa, Aitor
    Agirre, Eneko
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 184
  • [5] Zero-Shot Cross-Lingual Knowledge Transfer in VQA via Multimodal Distillation
    Weng, Yu
    Dong, Jun
    He, Wenbin
    Chaomurilige
    Liu, Xuan
    Liu, Zheng
    Gao, Honghao
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2024, : 1 - 11
  • [6] Combining Cross-lingual and Cross-task Supervision for Zero-Shot Learning
    Pikuliak, Matus
    Simko, Marian
    TEXT, SPEECH, AND DIALOGUE (TSD 2020), 2020, 12284 : 162 - 170
  • [7] Zero-Shot Learning for Cross-Lingual News Sentiment Classification
    Pelicon, Andraz
    Pranjic, Marko
    Miljkovic, Dragana
    Skrlj, Blaz
    Pollak, Senja
    APPLIED SCIENCES-BASEL, 2020, 10 (17):
  • [8] A joint learning approach with knowledge injection for zero-shot cross-lingual hate speech detection
    Pamungkas, Endang Wahyu
    Basile, Valerio
    Patti, Viviana
    INFORMATION PROCESSING & MANAGEMENT, 2021, 58 (04)
  • [9] XeroPol: Emotion-Aware Contrastive Learning for Zero-Shot Cross-Lingual Politeness Identification in Dialogues
    Priya, Priyanshu
    Firdaus, Mauajama
    Ekbal, Asif
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2024, : 6662 - 6671
  • [10] Out of Thin Air: Is Zero-Shot Cross-Lingual Keyword Detection Better Than Unsupervised?
    Koloski, Boshko
    Pollak, Senja
    Skrlj, Blaz
    Martinc, Matej
    LREC 2022: THIRTEEN INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2022, : 400 - 409