Covalent Organic Frameworks Based Inorganic/Organic Composite Materials for Photocatalytic Applications

被引:4
|
作者
Xiao, Mingjiao [1 ]
Wei, Yanze [2 ]
Yu, Ranbo [1 ,3 ]
机构
[1] Univ Sci & Technol Beijing, Sch Met & Ecol Engn, Dept Phys Chem, Beijing 100083, Peoples R China
[2] Chinese Acad Sci, Inst Proc Engn, State Key Lab Biochem Engn, Beijing 100190, Peoples R China
[3] Zhengzhou Univ, Key Lab Adv Mat Proc & Mold, Minist Educ, Zhengzhou 450002, Peoples R China
基金
中国国家自然科学基金;
关键词
covalent-organic frameworks; functional materials; organic-inorganic hybrid composites; photocatalysis; porous materials; VISIBLE-LIGHT-DRIVEN; SELECTIVE OXIDATION; PD NANOPARTICLES; EFFICIENT; COF; CONSTRUCTION; CRYSTALLINE; DEGRADATION; GENERATION; ALCOHOLS;
D O I
10.1002/cnma.202200408
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
As a rising class of functional porous organic materials with tunable pore structures and flexible chemical environments, covalent organic frameworks (COFs) have demonstrated their tremendous potential in numerous applications, such as adsorption, water purification, heterogeneous catalysis, and organic electronics. In the field of photocatalytic applications, the association of emerging COFs with traditional inorganic catalysts can effectively combine the functionality of COFs with the stability of their inorganic counterparts to construct efficient and stable composite photocatalysts. A rapidly growing new field has been established regarding COFs-based inorganic/organic hybrid photocatalysts, which call for a timely review to summarize recent developments. In this contribution, we revisit this promising composite photocatalysts by emphasizing some recent breakthroughs in synthetic strategies and the enhanced performance in various photocatalytic applications. Simultaneously, the mechanisms of performance improvement are elucidated by analyzing the interactions between the inorganic and organic counterparts. We hope general tactics could be inspired for directing open considerations for the future design of photocatalysts and their practical implementations.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Covalent organic frameworks (COFs) for electrochemical applications
    Zhao, Xiaojia
    Pachfule, Pradip
    Thomas, Arne
    CHEMICAL SOCIETY REVIEWS, 2021, 50 (12) : 6871 - 6913
  • [42] Covalent organic frameworks (COFs) for environmental applications
    Wang, Jianlong
    Zhuang, Shuting
    COORDINATION CHEMISTRY REVIEWS, 2019, 400
  • [43] Hybrid Porous Crystalline Materials from Metal Organic Frameworks and Covalent Organic Frameworks
    Chen, Ziman
    Li, Xinle
    Yang, Chongqing
    Cheng, Kaipeng
    Tan, Tianwei
    Lv, Yongqin
    Liu, Yi
    ADVANCED SCIENCE, 2021, 8 (20)
  • [44] Covalent Organic Frameworks: From Structures to Applications
    Tran, Quang Nhat
    Lee, Hyun Jong
    Tran, Ngo
    POLYMERS, 2023, 15 (05)
  • [45] Covalent Organic Frameworks: Structures, Synthesis, and Applications
    Lohse, Maria S.
    Bein, Thomas
    ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (33)
  • [46] Covalent organic frameworks: Advances in synthesis and applications
    Altaf, Amna
    Baig, Nadeem
    Sohail, Manzar
    Sher, Muhammad
    Ul-Hamid, Anwar
    Altaf, Muhammad
    Materials Today Communications, 2021, 28
  • [47] Covalent Organic Frameworks: Synthesis and Applications for Photocatalysis
    Shahid, Misbah
    Ur Rehman, Aziz
    Najam, Tayyaba
    Majeed, Hammad
    Shalash, Marwan
    El-Bahy, Salah M.
    Javed, Muhammad Sufyan
    Shah, Syed Shoaib Ahmad
    Nazir, Muhammad Altaf
    CHEMPHOTOCHEM, 2024, 8 (10):
  • [48] Metal and Covalent Organic Frameworks for Membrane Applications
    Fang, Mingyuan
    Montoro, Carmen
    Semsarilar, Mona
    MEMBRANES, 2020, 10 (05)
  • [49] Opportunities of Covalent Organic Frameworks for Advanced Applications
    Song, Yanpei
    Sun, Qi
    Aguila, Briana
    Ma, Shengqian
    ADVANCED SCIENCE, 2019, 6 (02)
  • [50] Applications of covalent organic frameworks in analytical chemistry
    Chen, Lixiao
    Wu, Qi
    Gao, Jie
    Li, Hui
    Dong, Shuqing
    Shi, Xiaofeng
    Zhao, Liang
    TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2019, 113 : 182 - 193