Trace mappings on quasi-Banach modulation spaces and applications to pseudo-differential operators of amplitude type

被引:0
作者
Toft, Joachim [1 ]
Bhimani, Divyang G. [2 ]
Manna, Ramesh [3 ]
机构
[1] Linnaeus Univ, Dept Math, Vaxjo, Sweden
[2] Indian Inst Sci Educ & Res, Dept Math, Pune, Maharashtra, India
[3] OCC Homi Bhabha Natl Inst, Sch Math Sci, Natl Inst Sci Educ & Res Bhubaneswar, Jatni 752050, India
基金
瑞典研究理事会;
关键词
Modulation spaces; Gelfand-Shilov spaces; Wiener amalgam spaces; trace map; amplitude; pseudo-differential operators; INTEGRABLE GROUP-REPRESENTATIONS; TIME-FREQUENCY ANALYSIS; GELFAND-SHILOV SPACES; ALPHA-MODULATION; L-P; BOUNDEDNESS; CALCULUS; NUCLEARITY; CONTINUITY; TOEPLITZ;
D O I
10.1142/S0219530522500063
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We deduce trace properties for modulation spaces (including certain Wiener-amalgam spaces) of Gelfand-Shilov distributions.We use these results to show that psi dos with amplitudes in suitable modulation spaces, agree with normal type psi dos whose symbols belong to (other) modulation spaces. In particular we extend earlier trace results for modulation spaces, to include quasi-Banach modulation spaces. We also apply our results to extend earlier results on Schatten-von Neumann and nuclear properties for psi dos with amplitudes in modulation spaces.
引用
收藏
页码:453 / 495
页数:43
相关论文
共 60 条
[1]   Pseudo-Differential Calculus in Anisotropic Gelfand-Shilov Setting [J].
Abdeljawad, Ahmed ;
Cappiello, Marco ;
Toft, Joachim .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2019, 91 (03)
[2]  
[Anonymous], 1978, Sobolev spaces
[3]  
[Anonymous], 1998, Boundary Value Problems and Singular Pseudo-Differential Operators
[4]   Characterization of Smooth Symbol Classes by Gabor Matrix Decay [J].
Bastianoni, Federico ;
Cordero, Elena .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2021, 28 (01)
[5]  
Benyi A., 2020, Modulation Spaces. With Applications to Pseudodifferential Operators and Nonlinear Schrdinger Equations
[6]   Weyl quantization of Lebesgue spaces [J].
Boggiatto, Paolo ;
De Donno, Giuseppe ;
Oliaro, Alessandro .
MATHEMATISCHE NACHRICHTEN, 2009, 282 (12) :1656-1663
[7]   Pseudo-differential operators in a Gelfand-Shilov setting [J].
Cappiello, Marco ;
Toft, Joachim .
MATHEMATISCHE NACHRICHTEN, 2017, 290 (5-6) :738-755
[8]   Characterizations of the Gelfand-Shilov spaces via Fourier transforms [J].
Chung, J ;
Chung, SY ;
Kim, D .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (07) :2101-2108
[9]  
Cordero E., 2020, TIME FREQUENCY ANAL, DOI [10.1515/9783110532456, DOI 10.1515/9783110532456]
[10]   Sharp Integral Bounds for Wigner Distributions [J].
Cordero, Elena ;
Nicola, Fabio .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2018, 2018 (06) :1779-1807