Hardware implementation of memristor-based artificial neural networks

被引:173
作者
Aguirre, Fernando [1 ,2 ]
Sebastian, Abu [3 ]
Le Gallo, Manuel [3 ]
Song, Wenhao [4 ]
Wang, Tong [4 ]
Yang, J. Joshua [4 ]
Lu, Wei [5 ]
Chang, Meng-Fan [6 ]
Ielmini, Daniele [7 ,8 ]
Yang, Yuchao [9 ]
Mehonic, Adnan [10 ]
Kenyon, Anthony [10 ]
Villena, Marco A. [1 ]
Roldan, Juan B. [11 ]
Wu, Yuting [5 ]
Hsu, Hung-Hsi [6 ]
Raghavan, Nagarajan [12 ]
Sune, Jordi [2 ]
Miranda, Enrique [2 ]
Eltawil, Ahmed [13 ]
Setti, Gianluca [13 ]
Smagulova, Kamilya [13 ]
Salama, Khaled N. [13 ]
Krestinskaya, Olga [13 ]
Yan, Xiaobing [14 ]
Ang, Kah-Wee [15 ]
Jain, Samarth [15 ]
Li, Sifan [15 ]
Alharbi, Osamah [1 ]
Pazos, Sebastian [1 ]
Lanza, Mario [1 ]
机构
[1] King Abdullah Univ Sci & Technol KAUST, Phys Sci & Engn Div, Thuwal 239556900, Saudi Arabia
[2] Univ Autonoma Barcelona UAB, Dept Engn Elect, Barcelona 08193, Spain
[3] IBM Res Zurich, Ruschlikon, Switzerland
[4] Univ Southern Calif USC, Dept Elect & Comp Engn, Los Angeles, CA 90089 USA
[5] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
[6] Natl Tsing Hua Univ, Dept Elect Engn, Hsinchu 30013, Taiwan
[7] Politecn Milan, Dipartimento Elettron Informaz & Bioingn, Piazza L da Vinci 32, I-20133 Milan, Italy
[8] IUNET, Piazza L da Vinci 32, I-20133 Milan, Italy
[9] Peking Univ, Sch Elect & Comp Engn, Shenzhen, Peoples R China
[10] Univ Coll London UCL, Dept Elect & Elect Engn, Torrington Pl, London WC1E 7JE, England
[11] Univ Granada, Fac Ciencias, Dept Elect & Tecnol Comp, Ave Fuentenueva S-N, Granada 18071, Spain
[12] Singapore Univ Technol & Design, Engn Prod Dev EPD Pillar, 8 Somapah Rd, Singapore 487372, Singapore
[13] King Abdullah Univ Sci & Technol KAUST, Comp Elect & Math Sci & Engn Div, Thuwal 239556900, Saudi Arabia
[14] Hebei Univ, Key Lab Brain Like Neuromorph Devices & Syst Hebei, Baoding 071002, Peoples R China
[15] Natl Univ Singapore NUS, Coll Design & Engn, Dept Elect & Comp Engn, Singapore, Singapore
关键词
TAKE-ALL CIRCUIT; RESISTIVE SWITCHING MEMORY; IN-MEMORY; CROSSBAR ARRAY; HIGH-SPEED; PHASE-CHANGE; ENERGY; MODEL; RRAM; ACCELERATOR;
D O I
10.1038/s41467-024-45670-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Artificial Intelligence (AI) is currently experiencing a bloom driven by deep learning (DL) techniques, which rely on networks of connected simple computing units operating in parallel. The low communication bandwidth between memory and processing units in conventional von Neumann machines does not support the requirements of emerging applications that rely extensively on large sets of data. More recent computing paradigms, such as high parallelization and near-memory computing, help alleviate the data communication bottleneck to some extent, but paradigm- shifting concepts are required. Memristors, a novel beyond-complementary metal-oxide-semiconductor (CMOS) technology, are a promising choice for memory devices due to their unique intrinsic device-level properties, enabling both storing and computing with a small, massively-parallel footprint at low power. Theoretically, this directly translates to a major boost in energy efficiency and computational throughput, but various practical challenges remain. In this work we review the latest efforts for achieving hardware-based memristive artificial neural networks (ANNs), describing with detail the working principia of each block and the different design alternatives with their own advantages and disadvantages, as well as the tools required for accurate estimation of performance metrics. Ultimately, we aim to provide a comprehensive protocol of the materials and methods involved in memristive neural networks to those aiming to start working in this field and the experts looking for a holistic approach. Memristors hold promise for massively-parallel computing at low power. Aguirre et al. provide a comprehensive protocol of the materials and methods for designing memristive artificial neural networks with the detailed working principles of each building block and the tools for performance evaluation.
引用
收藏
页数:40
相关论文
共 291 条
[1]   Challenges hindering memristive neuromorphic hardware from going mainstream [J].
Adam, Gina C. ;
Khiat, Ali ;
Prodromakis, Themis .
NATURE COMMUNICATIONS, 2018, 9
[2]  
Aguirre F. L., 2021 IEEE 12 LATIN A, DOI [10.1109/LASCAS51355.2021.9667132.2021, DOI 10.1109/LASCAS51355.2021.9667132.2021]
[3]   Assessment and Improvement of the Pattern Recognition Performance of Memdiode-Based Cross-Point Arrays with Randomly Distributed Stuck-at-Faults [J].
Aguirre, Fernando L. ;
Pazos, Sebastian M. ;
Palumbo, Felix ;
Morell, Antoni ;
Sune, Jordi ;
Miranda, Enrique .
ELECTRONICS, 2021, 10 (19)
[4]   SPICE Simulation of RRAM-Based Cross-Point Arrays Using the Dynamic Memdiode Model [J].
Aguirre, Fernando L. ;
Pazos, Sebastian M. ;
Palumbo, Felix ;
Sune, Jordi ;
Miranda, Enrique .
FRONTIERS IN PHYSICS, 2021, 9
[5]   Application of the Quasi-Static Memdiode Model in Cross-Point Arrays for Large Dataset Pattern Recognition [J].
Aguirre, Fernando Leonel ;
Pazos, Sebastian Matias ;
Palumbo, Felix ;
Sune, Jordi ;
Miranda, Enrique .
IEEE ACCESS, 2020, 8 :202174-202193
[6]   Pattern classification by memristive crossbar circuits using ex situ and in situ training [J].
Alibart, Fabien ;
Zamanidoost, Elham ;
Strukov, Dmitri B. .
NATURE COMMUNICATIONS, 2013, 4
[7]   Equivalent-accuracy accelerated neural-network training using analogue memory [J].
Ambrogio, Stefano ;
Narayanan, Pritish ;
Tsai, Hsinyu ;
Shelby, Robert M. ;
Boybat, Irem ;
di Nolfo, Carmelo ;
Sidler, Severin ;
Giordano, Massimo ;
Bodini, Martina ;
Farinha, Nathan C. P. ;
Killeen, Benjamin ;
Cheng, Christina ;
Jaoudi, Yassine ;
Burr, Geoffrey W. .
NATURE, 2018, 558 (7708) :60-+
[8]   Social Network Identification Through Image Classification With CNN [J].
Amerini, Irene ;
Li, Chang-Tsun ;
Caldelli, Roberto .
IEEE ACCESS, 2019, 7 :35264-35273
[9]   In-Memory Vector-Matrix Multiplication in Monolithic Complementary Metal-Oxide-Semiconductor-Memristor Integrated Circuits: Design Choices, Challenges, and Perspectives [J].
Amirsoleimani, Amirali ;
Alibart, Fabien ;
Yon, Victor ;
Xu, Jianxiong ;
Pazhouhandeh, M. Reza ;
Ecoffey, Serge ;
Beilliard, Yann ;
Genov, Roman ;
Drouin, Dominique .
ADVANCED INTELLIGENT SYSTEMS, 2020, 2 (11)
[10]   BRein Memory: A Single-Chip Binary/Ternary Reconfigurable in-Memory Deep Neural Network Accelerator Achieving 1.4 TOPS at 0.6 W [J].
Ando, Kota ;
Ueyoshi, Kodai ;
Orimo, Kentaro ;
Yonekawa, Haruyoshi ;
Sato, Shimpei ;
Nakahara, Hiroki ;
Takamaeda-Yamazaki, Shinya ;
Ikebe, Masayuki ;
Asai, Tetsuya ;
Kuroda, Tadahiro ;
Motomura, Masato .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2018, 53 (04) :983-994