Effects of soil moisture variations on the neutron spectra measured above ground: feasibility of a soil moisture monitor system based on neutron moderating cylinders

被引:1
作者
Calamida, A. [1 ]
Fontanilla, A. [1 ]
Russo, L. [1 ]
Pietropaolo, A. [1 ,2 ]
Pacheco, M. A. Caballero [1 ]
Domingo, C. [1 ,3 ]
Ayad, R. [4 ]
Alatawi, M. S. [3 ,4 ]
Bedogni, R. [1 ]
机构
[1] Ist Nazl Fis Nucl, Frascati Natl Labs, Frascati, Italy
[2] ENEA, Dept Fus & Technol Nucl Safety & Secur, Rome, Italy
[3] Univ Autonoma Barcelona, Dept Fis, Bellaterra, Spain
[4] Univ Tabuk, Dept Phys, Tabuk, Saudi Arabia
关键词
D O I
10.1140/epjp/s13360-024-04927-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Mapping the soil moisture is a key activity in water management and sustainable agriculture, especially in regions characterised by fragile agri-food systems and water scarcity. Cosmic Ray Neutron Sensors (CRNS) is a contactless nuclear technology used for estimating soil moisture (SM) content on a 20-30 m scale at the landscape level. Very interestingly, this corresponds to the so-called intermediate scale gap between the local probes, operating on the meter scale, and the satellite-based technologies, working on the kilometre scale and above. In state-of-art CRNS, the cosmic neutrons degraded by the soil are simply counted by a slightly moderated thermal neutron counter. After a calibration procedure, the SM is inferred by combining this count rate with environmental parameters: the atmospheric pressure, temperature and the air humidity. As the SM affects not only the environmental neutron fluence rate but also its energy distribution, this study was organised in such a way to understand if a CRNS with spectrometric capabilities could provide improved information on the SM distribution. To this aim, an environmental neutron spectrometer was designed by extending the Bonner Spheres to a more sensitive system made of moderating cylinders embedding long BF3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ _3 $$\end{document} proportional counters, the Moderating Cylinders Spectrometer (MCS). Relying on literature environmental neutron spectra, corresponding to different SM values in a standardised soil, the count rates in the MCS were calculated for different values of SM. To simulate various counting scenarios, these count rates were associated to different levels of "realistic" uncertainties and unfolded by means of the FRUIT code. The resulting neutron spectra are compared to the literature ones, allowing at estimating the resolving power of the spectrometer in terms of SM.
引用
收藏
页数:9
相关论文
共 15 条
  • [1] Characterization of extended range Bonner Sphere Spectrometers in the CERF high-energy broad neutron field at CERN
    Agosteo, S.
    Bedogni, R.
    Caresana, M.
    Charitonidis, N.
    Chiti, M.
    Esposito, A.
    Ferrarini, M.
    Severino, C.
    Silari, M.
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2012, 694 : 55 - 68
  • [2] Measurement of the neutron fields produced by a 62 MeV proton beam on a PMMA phantom using extended range Bonner sphere spectrometers
    Amgarou, K.
    Bedogni, R.
    Domingo, C.
    Esposito, A.
    Gentile, A.
    Carinci, G.
    Russo, S.
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2011, 654 (01) : 399 - 405
  • [3] A Bonner Sphere Spectrometer based on a large 6LiI(Eu) scintillator: Calibration in reference monoenergetic fields
    Bedogni, R.
    Pola, A.
    Costa, M.
    Monti, V.
    Thomas, D. J.
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2018, 897 : 18 - 21
  • [4] FRUIT:: An operational tool for multisphere neutron spectrometry in workplaces
    Bedogni, Roberto
    Domingo, Carles
    Esposito, Adolfo
    Fernandez, Francisco
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2007, 580 (03) : 1301 - 1309
  • [5] SIR-B SUBSURFACE IMAGING OF A SAND-BURIED LANDSCAPE - AL LABBAH PLATEAU, SAUDI-ARABIA
    BERLIN, GL
    TARABZOUNI, MA
    ALNASER, AH
    SHEIKHO, KM
    LARSON, RW
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1986, 24 (04): : 595 - 602
  • [6] Accuracy of the cosmic-ray soil water content probe in humid forest ecosystems: The worst case scenario
    Bogena, H. R.
    Huisman, J. A.
    Baatz, R.
    Franssen, H-J. Hendricks
    Vereecken, H.
    [J]. WATER RESOURCES RESEARCH, 2013, 49 (09) : 5778 - 5791
  • [7] A NEW TYPE OF NEUTRON SPECTROMETER
    BRAMBLETT, RL
    EWING, RI
    BONNER, TW
    [J]. NUCLEAR INSTRUMENTS & METHODS, 1960, 9 (01): : 1 - 12
  • [8] ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal Scattering Data
    Brown, D. A.
    Chadwick, M. B.
    Capote, R.
    Kahler, A. C.
    Trkov, A.
    Herman, M. W.
    Sonzogni, A. A.
    Danon, Y.
    Carlson, A. D.
    Dunn, M.
    Smith, D. L.
    Hale, G. M.
    Arbanas, G.
    Arcilla, R.
    Bates, C. R.
    Beck, B.
    Becker, B.
    Brown, F.
    Casperson, R. J.
    Conlin, J.
    Cullen, D. E.
    Descalle, M. -A.
    Firestone, R.
    Gaines, T.
    Guber, K. H.
    Hawari, A. I.
    Holmes, J.
    Johnson, T. D.
    Kawano, T.
    Kiedrowski, B. C.
    Koning, A. J.
    Kopecky, S.
    Leal, L.
    Lestone, J. P.
    Lubitz, C.
    Marquez Damian, J. I.
    Mattoon, C. M.
    McCutchan, E. A.
    Mughabghab, S.
    Navratil, P.
    Neudecker, D.
    Nobre, G. P. A.
    Noguere, G.
    Paris, M.
    Pigni, M. T.
    Plompen, A. J.
    Pritychenko, B.
    Pronyaev, V. G.
    Roubtsov, D.
    Rochman, D.
    [J]. NUCLEAR DATA SHEETS, 2018, 148 : 1 - 142
  • [9] International Atomic Energy Agency, 2017, Cosmic Ray Neutron Sensing: Use, Calibration and Validation for Soil Moisture Estimation, IAEA-TECDOC-1809
  • [10] Kohli M., 2019, The CASCADE 10B Thermal Neutron Detector and Soil Moisture Sensing by Cosmic-Ray Neutrons