Generalized Fourier Multipliers via Mittag-Leffler Functions

被引:1
作者
Hawawsheh, Laith [1 ]
Al-Salman, Ahmad [2 ,3 ]
机构
[1] German Jordanian Univ, Sch Basic Sci & Humanities, Amman, Jordan
[2] Sultan Qaboos Univ, Dept Math, Coll Sci, POB 36,Al Khod 123, Muscat, Oman
[3] Yarmouk Univ, Dept Math, Irbid, Jordan
关键词
Fourier transform; Mittag-Leffler function; spherical maximal function; Littlewood-Paley g-function; discrete singular integral operator; OPERATORS;
D O I
10.1007/s00009-024-02587-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Fourier multiplier related to Mittag-Leffler function is introduced. We prove that our multiplier is radial on Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}} <^>{n}$$\end{document}and generalizes the Bessel function. Furthermore, we study the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>{2}$$\end{document} boundedness of the related Mittag-Leffler maximal function, the Littlewood-Paley g-function, and the discrete singular integral operator. We prove that the three operators are bounded on L2(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>{2}({\mathbb {R}}<^>{n})$$\end{document}. In addition, our formulation of the introduced Mittag-Leffler maximal function is a solution of a diffusion equation. Our results generalize previously known results.
引用
收藏
页数:16
相关论文
共 15 条
[1]  
Al-Salman A, 2002, MATH RES LETT, V9, P697, DOI 10.4310/MRL.2002.v9.n5.a11
[2]  
Al-Salman A., 2002, J. Integral Equations Appl, V14, P343, DOI DOI 10.1216/JIEA/1181074927
[3]  
[Anonymous], 1958, Trans. Amer. Math. Soc., DOI DOI 10.1090/S0002-9947-1958-0112932-2
[4]   CONVOLUTION OPERATORS ON BANACH SPACE VALUED FUNCTIONS [J].
BENEDEK, A ;
PANZONE, R ;
CALDERON, AP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1962, 48 (03) :356-&
[5]   MAXIMAL AND SINGULAR INTEGRAL-OPERATORS VIA FOURIER-TRANSFORM ESTIMATES [J].
DUOANDIKOETXEA, J ;
DEFRANCIA, JLR .
INVENTIONES MATHEMATICAE, 1986, 84 (03) :541-561
[6]  
Fan DS, 1998, ACTA MATH SIN, V14, P235
[7]  
Gorenflo R., 2020, Mittag-Leffler Functions, DOI [DOI 10.1007/978-3-662-43930-2, 10.1007/978-3-662-61550-8]
[8]  
Grafakos L., 2008, CLASSICAL FOURIER AN, DOI 10.1007/978-0-387-09432-8
[9]   Mittag-Leffler Functions and Their Applications [J].
Haubold, H. J. ;
Mathai, A. M. ;
Saxena, R. K. .
JOURNAL OF APPLIED MATHEMATICS, 2011,
[10]   On Mittag-Leffler type function, fractional calculus operators and solutions of integral equations [J].
Kilbas, AA ;
Saigo, M .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 1996, 4 (04) :355-370