High order schemes for gradient flow with respect to a metric

被引:0
作者
Han, Saem [1 ]
Esedoglu, Selim [1 ]
Garikipati, Krishna [1 ,2 ,3 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Michigan Inst Computat Discovery & Engn, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
High order schemes; Gradient flow; Energy stability; Minimizing movements; VARIATIONAL FORMULATION;
D O I
10.1016/j.jcp.2023.112516
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
New criteria for energy stability of multi-step, multi-stage, and mixed schemes are introduced in the context of evolution equations that arise as gradient flow with respect to a metric. These criteria are used to exhibit second and third order consistent, energy stable schemes, which are then demonstrated on several partial differential equations that arise as gradient flow with respect to the 2-Wasserstein metric.
引用
收藏
页数:15
相关论文
共 10 条
[1]   CURVATURE-DRIVEN FLOWS - A VARIATIONAL APPROACH [J].
ALMGREN, F ;
TAYLOR, JE ;
WANG, L .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1993, 31 (02) :387-437
[2]  
Benamou JD, 2000, NUMER MATH, V84, P375, DOI 10.1007/s002119900117
[3]   Primal Dual Methods for Wasserstein Gradient Flows [J].
Carrillo, Jose A. ;
Craig, Katy ;
Wang, Li ;
Wei, Chaozhen .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2022, 22 (02) :389-443
[4]  
D G E., 1993, BOUND VALUE PROBL, P81
[5]  
Gallouet T., 2022, arXiv
[6]   Energy-diminishing integration of gradient systems [J].
Hairer, Ernst ;
Lubich, Christian .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2014, 34 (02) :452-461
[7]   The variational formulation of the Fokker-Planck equation [J].
Jordan, R ;
Kinderlehrer, D ;
Otto, F .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1998, 29 (01) :1-17
[8]   Second-order in time schemes for gradient flows in Wasserstein and geodesic metric spaces [J].
Legendre, Guillaume ;
Turinici, Gabriel .
COMPTES RENDUS MATHEMATIQUE, 2017, 355 (03) :345-353
[9]  
LUCKHAUS S, 1995, CALC VAR PARTIAL DIF, V3, P253, DOI 10.1007/BF01205007
[10]   A VARIATIONAL FORMULATION OF THE BDF2 METHOD FOR METRIC GRADIENT FLOWS [J].
Matthes, Daniel ;
Plazotta, Simon .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2019, 53 (01) :145-172