Replenishable prevascularized cell encapsulation devices increase graft survival and function in the subcutaneous space

被引:4
作者
Chendke, Gauree S. [1 ,2 ]
Kharbikar, Bhushan N. [2 ]
Ashe, Sudipta [3 ]
Faleo, Gaetano [4 ]
Sneddon, Julie B. [3 ,5 ,6 ,7 ]
Tang, Qizhi [3 ,4 ]
Hebrok, Matthias [3 ,8 ,9 ]
Desai, Tejal A. [1 ,2 ,3 ,10 ]
机构
[1] UC Berkeley UCSF Grad Program Bioengn, San Francisco, CA USA
[2] Univ Calif San Francisco, Dept Bioengn & Therapeut Sci, San Francisco, CA USA
[3] Univ Calif San Francisco, Diabet Ctr, San Francisco, CA USA
[4] UCSF Gladstone Inst Genome Immunol, Dept Surg, San Francisco, CA USA
[5] Univ Calif San Francisco, Dept Cell & Tissue Biol, San Francisco, CA USA
[6] Univ Calif San Francisco, Dept Anat, San Francisco, CA USA
[7] Eli & Edythe Broad Ctr Regenerat Med & Stem Cell R, San Francisco, CA USA
[8] Tech Univ Munich, Ctr Organoid Syst, Garching, Germany
[9] Helmholtz Diabet Ctr, Inst Diabet Organoid Technol, Helmholtz Munich, Neuherberg, Germany
[10] Brown Univ, Sch Engn, Providence, RI 02912 USA
关键词
beta cell replacement therapy; cell encapsulation device; human stem cells; prevascularization; transplantation in subcutaneous space; type; 1; diabetes; ISLET ENCAPSULATION; STEM-CELLS; TRANSPLANTATION;
D O I
10.1002/btm2.10520
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Beta cell replacement therapy (BCRT) for patients with type 1 diabetes (T1D) improves blood glucose regulation by replenishing the endogenous beta cells destroyed by autoimmune attack. Several limitations, including immune isolation, prevent this therapy from reaching its full potential. Cell encapsulation devices used for BCRT provide a protective physical barrier for insulin-producing beta cells, thereby protecting transplanted cells from immune attack. However, poor device engraftment posttransplantation leads to nutrient deprivation and hypoxia, causing metabolic strain on transplanted beta cells. Prevascularization of encapsulation devices at the transplantation site can help establish a host vascular network around the implant, increasing solute transport to the encapsulated cells. Here, we present a replenishable prevascularized implantation methodology (RPVIM) that allows for the vascular integration of replenishable encapsulation devices in the subcutaneous space. Empty encapsulation devices were vascularized for 14 days, after which insulin-producing cells were inserted without disrupting the surrounding vasculature. The RPVIM devices were compared with nonprevascularized devices (Standard Implantation Methodology [SIM]) and previously established prevascularized devices (Standard Prevascularization Implantation Methodology [SPVIM]). Results show that over 75% of RPVIM devices containing stem cell-derived insulin-producing beta cell clusters showed a signal after 28 days of implantation in subcutaneous space. Notably, not only was the percent of RPVIM devices showing signal significantly greater than SIM and SPVIM devices, but the intraperitoneal glucose tolerance tests and histological analyses showed that encapsulated stem-cell derived insulin-producing beta cell clusters retained their function in the RPVIM devices, which is crucial for the successful management of T1D.
引用
收藏
页数:13
相关论文
共 52 条
[1]   Designing a retrievable and scalable cell encapsulation device for potential treatment of type 1 diabetes [J].
An, Duo ;
Chiu, Alan ;
Flanders, James A. ;
Song, Wei ;
Shou, Dahua ;
Lu, Yen-Chun ;
Grunnet, Lars G. ;
Winkel, Louise ;
Ingvorsen, Camilla ;
Christophersen, Nicolaj Stroyer ;
Fels, Johannes Josef ;
Sand, Fredrik Wolfhagen ;
Ji, Yewei ;
Qi, Ling ;
Pardo, Yehudah ;
Luo, Dan ;
Silberstein, Meredith ;
Fan, Jintu ;
Ma, Minglin .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (02) :E263-E272
[2]  
Barkai Uriel, 2016, World J Transplant, V6, P69, DOI 10.5500/wjt.v6.i1.69
[3]   Xenotransplantation of tannic acid-encapsulated neonatal porcine islets decreases proinflammatory innate immune responses [J].
Barra, Jessie M. ;
Kozlovskaya, Veronika ;
Kepple, Jessica D. ;
Seeberger, Karen L. ;
Kuppan, Purushothaman ;
Hunter, Chad S. ;
Korbutt, Gregory S. ;
Kharlampieva, Eugenia ;
Tse, Hubert M. .
XENOTRANSPLANTATION, 2021, 28 (06)
[4]   The use of stem cells for pancreatic regeneration in diabetes mellitus [J].
Bouwens, Luc ;
Houbracken, Isabelle ;
Mfopou, Josue K. .
NATURE REVIEWS ENDOCRINOLOGY, 2013, 9 (10) :598-606
[5]   Engineering the vasculature for islet transplantation [J].
Bowers, Daniel T. ;
Song, Wei ;
Wang, Long-Hai ;
Ma, Minglin .
ACTA BIOMATERIALIA, 2019, 95 :131-151
[6]   Strategies for durable β cell replacement in type 1 diabetes [J].
Brusko, Todd M. ;
Russ, Holger A. ;
Stabler, Cherie L. .
SCIENCE, 2021, 373 (6554) :516-521
[7]  
Buder Brian, 2013, Immune Netw, V13, P235, DOI 10.4110/in.2013.13.6.235
[8]   The Role of Vascular Cells in Pancreatic Beta-Cell Function [J].
Burganova, Guzel ;
Bridges, Claire ;
Thorn, Peter ;
Landsman, Limor .
FRONTIERS IN ENDOCRINOLOGY, 2021, 12
[9]   Markedly decreased oxygen tension in transplanted rat pancreatic islets irrespective of the implantation site [J].
Carlsson, PO ;
Palm, F ;
Andersson, A ;
Liss, P .
DIABETES, 2001, 50 (03) :489-495
[10]   Advances in Pancreatic Islet Transplantation Sites for the Treatment of Diabetes [J].
Cayabyab, Fritz ;
Nih, Lina R. ;
Yoshihara, Eiji .
FRONTIERS IN ENDOCRINOLOGY, 2021, 12