Automated classification of nanoparticles with various ultrastructures and sizes via deep learning

被引:8
|
作者
Zelenka, Claudius [1 ]
Kamp, Marius [2 ,4 ]
Strohm, Kolja [1 ]
Kadoura, Akram [1 ]
Johny, Jacob [3 ]
Koch, Reinhard [1 ]
Kienle, Lorenz [2 ,4 ]
机构
[1] Univ Kiel, Dept Comp Sci, Christian Albrechts Pl 4, D-24118 Kiel, Germany
[2] Univ Kiel, Inst Mat Sci Synth & Real Struct, Kaiserstr 2, D-24143 Kiel, Germany
[3] Univ Duisburg Essen, Tech Chem & Ctr Nanointegrat Duisburg Essen CENIDE, Univ Str 7, D-45141 Essen, Germany
[4] Univ Kiel, Kiel Nano Surface & Interface Sci KiNSIS, Christian Albrechts Pl 4, D-24118 Kiel, Germany
关键词
Deep learning; Complex nanoparticles; Laser ablation in liquids; Neural network; CORE-SHELL NANOPARTICLES; MAGNETIC-PROPERTIES; ALLOY; PHASE;
D O I
10.1016/j.ultramic.2023.113685
中图分类号
TH742 [显微镜];
学科分类号
摘要
Accurately measuring the size, morphology, and structure of nanoparticles is very important, because they are strongly dependent on their properties for many applications. In this paper, we present a deep-learning based method for nanoparticle measurement and classification trained from a small data set of scanning transmission electron microscopy images including overlapping nanoparticles. Our approach is comprised of two stages: localization, i.e., detection of nanoparticles, and classification, i.e., categorization of their ultrastructure. For each stage, we optimize the segmentation and classification by analysis of the different state-of-the-art neural networks. We show how the generation of synthetic images, either using image processing or using various image generation neural networks, can be used to improve the results in both stages. Finally, the application of the algorithm to bimetallic nanoparticles demonstrates the automated data collection of size distributions including classification of complex ultrastructures. The developed method can be easily transferred to other material systems and nanoparticle structures.
引用
收藏
页数:8
相关论文
共 50 条
  • [11] Automated imbalanced classification via layered learning
    Cerqueira, Vitor
    Torgo, Luis
    Branco, Paula
    Bellinger, Colin
    MACHINE LEARNING, 2023, 112 (06) : 2083 - 2104
  • [12] Automated Measurements of Lung Sizes Using Deep Learning and Computer Vision
    Ismail, M. K.
    Edward, C.
    Hamedani, H.
    Loza, L.
    Amzajerdian, F.
    Kadlecek, S.
    Ruppert, K.
    Rizi, R. R.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2024, 209
  • [13] Automated Classification of Colorectal Neoplasms in White-Light Colonoscopy Images via Deep Learning
    Yang, Young Joo
    Cho, Bum-Joo
    Lee, Myung-Je
    Kim, Ju Han
    Lim, Hyun
    Bang, Chang Seok
    Jeong, Hae Min
    Hong, Ji Taek
    Baik, Gwang Ho
    JOURNAL OF CLINICAL MEDICINE, 2020, 9 (05)
  • [14] Deep learning for automated hip fracture detection and classification
    Zheng, Z.
    Ryu, B. Y.
    Kim, S. E.
    Song, D. S.
    Kim, S. H.
    Park, J. -W
    Ro, D. H.
    BONE & JOINT JOURNAL, 2025, 107B (02): : 213 - 220
  • [15] Deep learning for automated classification and characterization of amorphous materials
    Swanson, Kirk
    Trivedi, Shubhendu
    Lequieu, Joshua
    Swanson, Kyle
    Kondor, Risi
    SOFT MATTER, 2020, 16 (02) : 435 - 446
  • [16] Deep Learning Human Mind for Automated Visual Classification
    Spampinato, C.
    Palazzo, S.
    Kavasidis, I.
    Giordano, D.
    Souly, N.
    Shah, M.
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 4503 - 4511
  • [17] Deep Learning based Automated Food Image Classification
    Sumanth, Mukkamala
    Reddy, Anumula Hemanth
    Abhishek, Dandu
    Balaji, Sanaka Venkata
    Amarendra, K.
    Srinivas, P. V. V. S.
    2024 SECOND INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTING AND INFORMATICS, ICICI 2024, 2024, : 103 - 107
  • [18] Deep Learning for Automated Classification of Hip Hardware on Radiographs
    Ma, Yuntong
    Bauer, Justin L.
    Yoon, Acacia H.
    Beaulieu, Christopher F.
    Yoon, Luke
    Do, Bao H.
    Fang, Charles X.
    JOURNAL OF IMAGING INFORMATICS IN MEDICINE, 2025, 38 (02): : 988 - 996
  • [19] On OCT Image Classification via Deep Learning
    Wang, Depeng
    Wang, Liejun
    IEEE PHOTONICS JOURNAL, 2019, 11 (05):
  • [20] Automated imbalanced classification via meta-learning
    Moniz, Nuno
    Cerqueira, Vitor
    Expert Systems with Applications, 2021, 178