The wealth of epidemiological evidence in the scientific world underscores the possibility that a plant -based diet can reduce the prevalence of common diseases such as diabetes, cardiovascular disease, can-cer, and stroke. The therapeutic effects of plant sources are partly explained by phenolic secondary metabolites or polyphenolic compounds. Therefore, polyphenolic compounds, which are widely dis-tributed in plants, are of great interest for the development of effective specific drugs with antioxidant and anti-inflammatory effects. Moreover, polyphenol compounds have no harmful effects due to their natural biocompatibility and safety. Numerous studies have highlighted the potential of some industrial food wastes from plant material processing, including apple peels and mashed potatoes, grape skins, tomato and carrot peels, pomegranate peels and seeds, and many others. These byproducts are consid-ered low-cost sources of natural biological compounds, including antioxidants, which have beneficial effects on human health.The polyphenol complex of pomegranate peel (Punica granatum L.), which makes up half of the pome-granate fruit, has more pronounced antioxidant and anti-inflammatory properties than other parts. And the most important active components of pomegranate peel, which are found only in this plant, are puni-calagin, followed by ellagic acid and gallic acid. It is known that these polyphenolic compounds of pome-granate peel have the most pronounced therapeutic effect. Several studies have shown the protective effect of ellagic acid, punicalagin, against oxidative stress damage caused by free radicals. The potential of pomegranate peel as an antioxidant and therapeutic component in various biological systems is high, according to scientific sources.However, despite extensive research in recent years, a review of sources has shown that there is insuf-ficient evidence to support the therapeutic effects of polyphenolic compounds from pomegranate peels. The role of pomegranate peel polyphenolic compounds, including flavonoids, as antioxidants in various biological systems also requires further research. Of particular importance are the mechanisms by which antioxidants influence the cellular response against oxidative stress. The purpose of this review was to report our current knowledge of plant polyphenolic compounds and their classification, and to evaluate the potential of phenolic compounds from pomegranate peels with significant antioxidant and therapeu-tic effects.(c) 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).