Hurricanes, rapidly increasing in complexity and strength in a warmer world, are one of the worst natural disasters in the 21st century. Further studies integrating the changing hurricane features are thus crucial to aid in the prediction of major hurricanes. With this in mind, we present a new framework based on automated decision tree analysis, which has the capability to identify the most important cloud structural parameters from GOES imagery as predictors for hurricane intensification potential in the Atlantic and Pacific oceans. The proposed framework has been proved effective for predicting major hurricanes with an overall accuracy of 73% from 6 to 54 h in advance (both regions combined).
机构:
Penn State Univ, Dept Geosci, University Pk, PA 16802 USA
Penn State Univ, Earth & Environm Syst Inst, University Pk, PA 16802 USAPenn State Univ, Dept Geosci, University Pk, PA 16802 USA
Alley, Richard B.
Emanuel, Kerry A.
论文数: 0引用数: 0
h-index: 0
机构:
MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USAPenn State Univ, Dept Geosci, University Pk, PA 16802 USA
Emanuel, Kerry A.
Zhang, Fuqing
论文数: 0引用数: 0
h-index: 0
机构:
Penn State Univ, Dept Meteorol & Atmospher Sci, University Pk, PA 16802 USA
Penn State Univ, Ctr Adv Data Assimilat & Predictabil Tech, University Pk, PA 16802 USAPenn State Univ, Dept Geosci, University Pk, PA 16802 USA
机构:
Penn State Univ, Dept Geosci, University Pk, PA 16802 USA
Penn State Univ, Earth & Environm Syst Inst, University Pk, PA 16802 USAPenn State Univ, Dept Geosci, University Pk, PA 16802 USA
Alley, Richard B.
Emanuel, Kerry A.
论文数: 0引用数: 0
h-index: 0
机构:
MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USAPenn State Univ, Dept Geosci, University Pk, PA 16802 USA
Emanuel, Kerry A.
Zhang, Fuqing
论文数: 0引用数: 0
h-index: 0
机构:
Penn State Univ, Dept Meteorol & Atmospher Sci, University Pk, PA 16802 USA
Penn State Univ, Ctr Adv Data Assimilat & Predictabil Tech, University Pk, PA 16802 USAPenn State Univ, Dept Geosci, University Pk, PA 16802 USA