A hybrid deep learning network for forecasting air pollutant concentrations

被引:6
作者
Mao, Yu-Shun [1 ]
Lee, Shie-Jue [1 ,2 ]
Wu, Chih-Hung [3 ]
Hou, Chun-Liang [4 ]
Ouyang, Chen-Sen [5 ]
Liu, Chih-Feng [6 ]
机构
[1] Natl Sun Yat Sen Univ, Dept Elect Engn, Kaohsiung, Taiwan
[2] Natl Sun Yat Sen Univ, Intelligent Elect Commerce Res Ctr, Kaohsiung, Taiwan
[3] Natl Univ Kaohsiung, Dept Elect Engn, Kaohsiung, Taiwan
[4] Chunghwa Telecom Co Ltd, Informat Technol Dept, Southern Taiwan Business Grp, Kaohsiung, Taiwan
[5] I Shou Univ, Dept Informat Engn, Kaohsiung, Taiwan
[6] YajanTech Co Ltd, Tainan, Taiwan
关键词
Air quality prediction; Convolutional neural network; Bidirectional gated recurrent unit; Attention mechanism; Deep learning network; NEURAL-NETWORKS; PREDICTION; PM2.5; MODEL; PM10;
D O I
10.1007/s10489-022-04191-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Air pollution has become a serious problem. Thus, this study formulated a method based on a multi-input multi-output, hybrid, deep neural network for air quality prediction. In our method, the Pearson correlation is used to identify which predictors ought to be included in the model. The network architecture features dilated convolution and a bidirectional gated recurrent unit for the model to learn relationships (particularly temporal relationships) in time-series data; it also features an attention mechanism. Our method outperformed its counterparts in experiments on five real-world data sets in predicting PM2.5 and PM10 concentrations.
引用
收藏
页码:12792 / 12810
页数:19
相关论文
共 49 条
[1]   A new method for prediction of air pollution based on intelligent computation [J].
Al-Janabi, Samaher ;
Mohammad, Mustafa ;
Al-Sultan, Ali .
SOFT COMPUTING, 2020, 24 (01) :661-680
[2]   An integrated approach to identify the origin of PM10 exceedances [J].
Amodio, M. ;
Andriani, E. ;
de Gennaro, G. ;
Loiotile, A. Demarinis ;
Di Gilio, A. ;
Placentino, M. C. .
ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2012, 19 (08) :3132-3141
[3]  
[Anonymous], 2021, UCI MACHINE LEARNING
[4]  
Bramer M., 2016, PRINCIPLES DATA MINI, P9, DOI [10.1007/978-1-4471-7307-62, DOI 10.1007/978-1-4471-7307-6]
[5]   A Machine Learning Approach to Predict Air Quality in California [J].
Castelli, Mauro ;
Clemente, Fabiana Martins ;
Popovic, Ales ;
Silva, Sara ;
Vanneschi, Leonardo .
COMPLEXITY, 2020, 2020
[6]  
Chollet F, 2017, RSTUDIO AI BLOG TIME
[7]   A Survey on Fuzzy Deep Neural Networks [J].
Das, Rangan ;
Sen, Sagnik ;
Maulik, Ujjwal .
ACM COMPUTING SURVEYS, 2020, 53 (03)
[8]   Deep Air Quality Forecasting Using Hybrid Deep Learning Framework [J].
Du, Shengdong ;
Li, Tianrui ;
Yang, Yan ;
Horng, Shi-Jinn .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2021, 33 (06) :2412-2424
[9]  
EPA, 2021, ENV PROT ADM ENV OP
[10]   Discovering relationships and forecasting PM10 and PM2.5 concentrations in Bogota, Colombia, using Artificial Neural Networks, Principal Component Analysis, and k-means clustering [J].
Franceschi, Fabiana ;
Cobo, Martha ;
Figueredo, Manuel .
ATMOSPHERIC POLLUTION RESEARCH, 2018, 9 (05) :912-922