Log-Gaussian gamma processes for training Bayesian neural networks in Raman and CARS spectroscopies

被引:3
作者
Harkonen, Teemu [1 ]
Vartiainen, Erik M. [1 ]
Lensu, Lasse [1 ]
Moores, Matthew T. [1 ,2 ]
Roininen, Lassi [1 ]
机构
[1] LUT Univ, Sch Engn Sci, Dept Computat Engn, Yliopistonkatu 34, FI-53850 Lappeenranta, Finland
[2] Univ Wollongong, Natl Inst Appl Stat Res Australia, Wollongong, NSW 2522, Australia
基金
芬兰科学院;
关键词
BASE-LINE CORRECTION; UNCERTAINTY QUANTIFICATION; DEEP; EXTRACTION; COMPUTATION; PARAMETERS; RETRIEVAL; DROPOUT;
D O I
10.1039/d3cp04960d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We propose an approach utilizing gamma-distributed random variables, coupled with log-Gaussian modeling, to generate synthetic datasets suitable for training neural networks. This addresses the challenge of limited real observations in various applications. We apply this methodology to both Raman and coherent anti-Stokes Raman scattering (CARS) spectra, using experimental spectra to estimate gamma process parameters. Parameter estimation is performed using Markov chain Monte Carlo methods, yielding a full Bayesian posterior distribution for the model which can be sampled for synthetic data generation. Additionally, we model the additive and multiplicative background functions for Raman and CARS with Gaussian processes. We train two Bayesian neural networks to estimate parameters of the gamma process which can then be used to estimate the underlying Raman spectrum and simultaneously provide uncertainty through the estimation of parameters of a probability distribution. We apply the trained Bayesian neural networks to experimental Raman spectra of phthalocyanine blue, aniline black, naphthol red, and red 264 pigments and also to experimental CARS spectra of adenosine phosphate, fructose, glucose, and sucrose. The results agree with deterministic point estimates for the underlying Raman and CARS spectral signatures. We propose an approach utilizing gamma-distributed random variables, coupled with log-Gaussian modeling, to generate synthetic datasets suitable for training neural networks.
引用
收藏
页码:3389 / 3399
页数:11
相关论文
共 71 条
[21]   DRAM: Efficient adaptive MCMC [J].
Haario, Heikki ;
Laine, Marko ;
Mira, Antonietta ;
Saksman, Eero .
STATISTICS AND COMPUTING, 2006, 16 (04) :339-354
[22]   Deep D-Bar: Real-Time Electrical Impedance Tomography Imaging With Deep Neural Networks [J].
Hamilton, S. J. ;
Hauptmann, A. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (10) :2367-2377
[23]  
Harkonen T., 2022, ARXIV
[24]  
Härkönen T, 2023, INT J UNCERTAIN QUAN, V13, P41, DOI 10.1615/Int.J.UncertaintyQuantification.2023044906
[25]   A LOG-GAUSSIAN COX PROCESS WITH SEQUENTIAL MONTE CARLO FOR LINE NARROWING IN SPECTROSCOPY [J].
Harkonen, Teemu ;
Hannula, Emma ;
Moores, Matthew T. ;
Vartiainen, Erik M. ;
Roininen, Lassi .
FOUNDATIONS OF DATA SCIENCE, 2023, :503-519
[26]   Interpolated inverse discrete wavelet transforms in additive and non-additive spectral background corrections [J].
Harkonen, Teemu ;
Vartiainen, Erik .
OPTICS CONTINUUM, 2023, 2 (05) :1068-1076
[27]   Bayesian Quantification for Coherent Anti-Stokes Raman Scattering Spectroscopy [J].
Harkonen, Teemu ;
Roininen, Lassi ;
Moores, Matthew T. ;
Vartiainen, Erik M. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2020, 124 (32) :7005-7012
[28]   Baseline correction for Raman spectra using an improved asymmetric least squares method [J].
He, Shixuan ;
Zhang, Wei ;
Liu, Lijuan ;
Huang, Yu ;
He, Jiming ;
Xie, Wanyi ;
Wu, Peng ;
Du, Chunlei .
ANALYTICAL METHODS, 2014, 6 (12) :4402-4407
[29]  
Hilbe J.M., 2011, Negative binomial regression, DOI DOI 10.1017/CBO9780511973420
[30]   Deep learning as phase retrieval tool for CARS spectra [J].
Houhou, Rola ;
Barman, Parijat ;
Schmitt, Micheal ;
Meyer, Tobias ;
Popp, Juergen ;
Bocklitz, Thomas .
OPTICS EXPRESS, 2020, 28 (14) :21002-21024