Log-Gaussian gamma processes for training Bayesian neural networks in Raman and CARS spectroscopies

被引:3
作者
Harkonen, Teemu [1 ]
Vartiainen, Erik M. [1 ]
Lensu, Lasse [1 ]
Moores, Matthew T. [1 ,2 ]
Roininen, Lassi [1 ]
机构
[1] LUT Univ, Sch Engn Sci, Dept Computat Engn, Yliopistonkatu 34, FI-53850 Lappeenranta, Finland
[2] Univ Wollongong, Natl Inst Appl Stat Res Australia, Wollongong, NSW 2522, Australia
基金
芬兰科学院;
关键词
BASE-LINE CORRECTION; UNCERTAINTY QUANTIFICATION; DEEP; EXTRACTION; COMPUTATION; PARAMETERS; RETRIEVAL; DROPOUT;
D O I
10.1039/d3cp04960d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We propose an approach utilizing gamma-distributed random variables, coupled with log-Gaussian modeling, to generate synthetic datasets suitable for training neural networks. This addresses the challenge of limited real observations in various applications. We apply this methodology to both Raman and coherent anti-Stokes Raman scattering (CARS) spectra, using experimental spectra to estimate gamma process parameters. Parameter estimation is performed using Markov chain Monte Carlo methods, yielding a full Bayesian posterior distribution for the model which can be sampled for synthetic data generation. Additionally, we model the additive and multiplicative background functions for Raman and CARS with Gaussian processes. We train two Bayesian neural networks to estimate parameters of the gamma process which can then be used to estimate the underlying Raman spectrum and simultaneously provide uncertainty through the estimation of parameters of a probability distribution. We apply the trained Bayesian neural networks to experimental Raman spectra of phthalocyanine blue, aniline black, naphthol red, and red 264 pigments and also to experimental CARS spectra of adenosine phosphate, fructose, glucose, and sucrose. The results agree with deterministic point estimates for the underlying Raman and CARS spectral signatures. We propose an approach utilizing gamma-distributed random variables, coupled with log-Gaussian modeling, to generate synthetic datasets suitable for training neural networks.
引用
收藏
页码:3389 / 3399
页数:11
相关论文
共 71 条
  • [1] Abadi M., ARXIV
  • [2] Abdalla Ayman M., 2021, 2021 International Conference on Information Technology (ICIT), P622, DOI 10.1109/ICIT52682.2021.9491774
  • [3] A review of uncertainty quantification in deep learning: Techniques, applications and challenges
    Abdar, Moloud
    Pourpanah, Farhad
    Hussain, Sadiq
    Rezazadegan, Dana
    Liu, Li
    Ghavamzadeh, Mohammad
    Fieguth, Paul
    Cao, Xiaochun
    Khosravi, Abbas
    Acharya, U. Rajendra
    Makarenkov, Vladimir
    Nahavandi, Saeid
    [J]. INFORMATION FUSION, 2021, 76 : 243 - 297
  • [4] Review of deep learning: concepts, CNN architectures, challenges, applications, future directions
    Alzubaidi, Laith
    Zhang, Jinglan
    Humaidi, Amjad J.
    Al-Dujaili, Ayad
    Duan, Ye
    Al-Shamma, Omran
    Santamaria, J.
    Fadhel, Mohammed A.
    Al-Amidie, Muthana
    Farhan, Laith
    [J]. JOURNAL OF BIG DATA, 2021, 8 (01)
  • [5] [Anonymous], 2017, TENSORFLOW DISTRIBUT
  • [6] Antonio D., 2023, ARXIV
  • [7] Sign constraints improve the detection of differences between complex spectral data sets: LC-IR as an example
    Boelens, HFM
    Eilers, PHC
    Hankemeier, T
    [J]. ANALYTICAL CHEMISTRY, 2005, 77 (24) : 7998 - 8007
  • [8] Estimation of Stellar Ages and Masses Using Gaussian Process Regression
    Bu, Yude
    Kumar, Yerra Bharat
    Xie, Jianhang
    Pan, Jingchang
    Zhao, Gang
    Wu, Yaqian
    [J]. ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2020, 249 (01)
  • [9] Calandra R, 2016, IEEE IJCNN, P3338, DOI 10.1109/IJCNN.2016.7727626
  • [10] An Improved Background-Correction Algorithm for Raman Spectroscopy Based on the Wavelet Transform
    Chi, Mingbo
    Han, Xinxin
    Xu, Yang
    Wang, Yue
    Shu, Fengfeng
    Zhou, Wenchao
    Wu, Yihui
    [J]. APPLIED SPECTROSCOPY, 2019, 73 (01) : 78 - 87