Advancing Sustainable Decomposition of Biomass Tar Model Compound: Machine Learning, Kinetic Modeling, and Experimental Investigation in a Non-Thermal Plasma Dielectric Barrier Discharge Reactor

被引:11
作者
Arshad, Muhammad Yousaf [1 ,2 ]
Saeed, Muhammad Azam [2 ]
Tahir, Muhammad Wasim [2 ]
Pawlak-Kruczek, Halina [3 ]
Ahmad, Anam Suhail [4 ]
Niedzwiecki, Lukasz [3 ,5 ]
机构
[1] Interloop Ltd, Corp Sustainabil & Digital Chem Management Div, Faisalabad 38000, Pakistan
[2] Univ Engn & Technol, Dept Chem Engn, Lahore 54000, Pakistan
[3] Wroclaw Univ Sci & Technol, Dept Energy Convers Engn, Wyb Wyspianskiego 27, PL-50370 Wroclaw, Poland
[4] Halliburton Worldwide, 3000 N Sam Houston Pkwy E, Houston, TX 77032 USA
[5] VSB Tech Univ Ostrava, Energy Res Ctr, Ctr Energy & Environm Technol, 17 Listopadu 2172-15, Ostrava 70800, Czech Republic
关键词
NTP reactor; benzene plasma decomposition; kinetic modeling; reactor performance and simulation; machine learning studies; LOWER HYDROCARBONS; PULSED-CORONA; PRODUCER GAS; GASIFICATION; CONVERSION; REMOVAL; METHANE; TOLUENE; DEGRADATION; REDUCTION;
D O I
10.3390/en16155835
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This study examines the sustainable decomposition reactions of benzene using non-thermal plasma (NTP) in a dielectric barrier discharge (DBD) reactor. The aim is to investigate the factors influencing benzene decomposition process, including input power, concentration, and residence time, through kinetic modeling, reactor performance assessment, and machine learning techniques. To further enhance the understanding and modeling of the decomposition process, the researchers determine the apparent decomposition rate constant, which is incorporated into a kinetic model using a novel theoretical plug flow reactor analogy model. The resulting reactor model is simulated using the ODE45 solver in MATLAB, with advanced machine learning algorithms and performance metrics such as RMSE, MSE, and MAE employed to improve accuracy. The analysis reveals that higher input discharge power and longer residence time result in increased tar analogue compound (TAC) decomposition. The results indicate that higher input discharge power leads to a significant improvement in the TAC decomposition rate, reaching 82.9%. The machine learning model achieved very good agreement with the experiments, showing a decomposition rate of 83.01%. The model flagged potential hotspots at 15% and 25% of the reactor's length, which is important in terms of engineering design of scaled-up reactors.
引用
收藏
页数:26
相关论文
共 62 条
[1]   Humidity effects on surface dielectric barrier discharge for gaseous naphthalene decomposition [J].
Abdelaziz, Ayman A. ;
Ishijima, Tatsuo ;
Seto, Takafumi .
PHYSICS OF PLASMAS, 2018, 25 (04)
[2]   Performance of a surface dielectric barrier discharge based reactor for destruction of naphthalene in an air stream [J].
Abdelaziz, Ayman A. ;
Seto, Takafumi ;
Abdel-Salam, M. ;
Otani, Yoshio .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2012, 45 (11)
[3]   Applying chemical engineering concepts to non-thermal plasma reactors [J].
Affonso Nobrega, Pedro ;
Gaunand, Alain ;
Rohani, Vandad ;
Cauneau, Francois ;
Fulcheri, Laurent .
PLASMA SCIENCE & TECHNOLOGY, 2018, 20 (06)
[4]   Tar reduction in biomass producer gas via mechanical, catalytic and thermal methods: A review [J].
Anis, Samsudin ;
Zainal, Z. A. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2011, 15 (05) :2355-2377
[5]   Optimization of acid-assisted extraction of pectin from banana (Musa Acuminata) peels by central composite design [J].
Arshad, M. Y. ;
Rashid, A. ;
Gul, H. ;
Ahmed, A. S. ;
Jabbar, F. .
GLOBAL NEST JOURNAL, 2022, 24 (04) :752-756
[6]  
Arshad MY, 2023, European Journal of Chemistry, V14, P155, DOI [10.5155/eurjchem.14.1.155-164.2396, 10.5155/eurjchem.14.1.155-164.2396, DOI 10.5155/EURJCHEM.14.1.155-164.2396]
[7]   Predictive modeling for energy recovery from sewage sludge gasification [J].
Carotenuto, Alberto ;
Di Fraia, Simona ;
Massarotti, Nicola ;
Sobek, Szymon ;
Uddin, M. Rakib ;
Vanoli, Laura ;
Werle, Sebastian .
ENERGY, 2023, 263
[8]   Performance Analysis of Machine Learning Algorithms for Energy Demand-Supply Prediction in Smart Grids [J].
Cebekhulu, Eric ;
Onumanyi, Adeiza James ;
Isaac, Sherrin John .
SUSTAINABILITY, 2022, 14 (05)
[9]   Torrefaction and gasification of biomass for polygeneration: Production of biochar and producer gas at low load conditions [J].
Cespiva, Jakub ;
Niedzwiecki, Lukasz ;
Wnukowski, Mateusz ;
Krochmalny, Krystian ;
Mularski, Jakub ;
Ochodek, Tadeas ;
Pawlak-Kruczek, Halina .
ENERGY REPORTS, 2022, 8 :134-144
[10]  
Čespiva J, 2020, International Journal of Energy Production and Management, V5, P212, DOI [10.2495/eq-v5-n3-212-222, 10.2495/EQ-V5-N3-212-222, DOI 10.2495/EQ-V5-N3-212-222, 10.2495/EQ-V5-N3-195-211]