On the Roles of Cellulose Nanocrystals in Fiber Cement: Implications for Rheology, Hydration Kinetics, and Mechanical Properties

被引:14
作者
Raghunath, Sreenath [1 ,2 ]
Hoque, Mahfuzul [1 ,2 ]
Foster, E. Johan [1 ,2 ]
机构
[1] Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z4, Canada
[2] Bioprod Inst, Vancouver, BC V6T 1Z4, Canada
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会;
关键词
fiber; cement; pulp; cellulose nanocrystals(CNCs); polycarboxylate superplasticizers (PCEs); hydration kinetics; rheology; MICROSTRUCTURE; PERFORMANCE; DURABILITY; BIOPOLYMERS; PRODUCTS;
D O I
10.1021/acssuschemeng.3c01392
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Fiber cement reinforced with pulp fibers is one of thekey driversfor the decarbonization of nonstructural building materials, wherethe inclusion of sustainable pulp fibers at high proportions (i.e.,> 8 wt %) renders poor workability of fiber-cement slurry witha concomitantloss in mechanical strength. Petrochemical-derived superplasticizers,i.e., polycarboxylates (PCEs), are predominantly used in fiber cement(including cement mortars) because they dramatically improve (content<0.5 wt %) the slurry rheology but reduce the rate of hydrationand weaken the strength of the cured composite. Thus, it is crucialto explore renewable and bio-based superplasticizers devoid of anynegative traits (if possible) of the conventional PCEs. In this study,we examined wood-derived cellulose nanocrystals (CNCs) as a multifunctionaladditive in fiber cement (bleached pulp fiber content: 8 wt %). Infiber cement, variation of the content (0.02-4 wt %) of CNCsresulted in improvement in the shear thinning behavior of the fiber-cementslurry and thereafter increased the hydration kinetics at high CNCcontents (2-4 wt %). Notably, the flexural strength of thecomposite also exhibited improvement upon the addition of CNCs; themaximum strength was observed at 4 wt % of CNCs. Overall, the beneficialroles of CNCs afforded >10 wt % (in-total) bio-based content infibercement without compromising the mechanical strength and curing time(compared to PCEs); hence, the findings of this study could unravelnew avenues in interface engineering of cement composites leveragingthe multifunctional features of biomaterials, thus enhancing sustainability. Cellulose nanocrystals as a green andsustainable additivefor cement composites modify rheology, accelerate hydration kinetics,and improve mechanical properties.
引用
收藏
页码:10727 / 10736
页数:10
相关论文
共 72 条
  • [1] [Anonymous], PORTLANDCEMENT
  • [2] [Anonymous], NANOCELLULOSE DATA S
  • [3] [Anonymous], Hydration
  • [4] [Anonymous], TREESARE CLIMATE CHA
  • [5] [Anonymous], POLY ACRYLAMIDE CO A
  • [6] [Anonymous], BLEACHED SOFTWOOD KR
  • [7] Cellulosic fiber reinforced cement-based composites: A review of recent research
    Ardanuy, Monica
    Claramunt, Josep
    Toledo Filho, Romildo Dias
    [J]. CONSTRUCTION AND BUILDING MATERIALS, 2015, 79 : 115 - 128
  • [8] ASTM, 2016, C11852016 ASTM
  • [9] Banfill P., 2006, RHEOL REV, P61, DOI [10.1201/9781482288889, DOI 10.4324/9780203473290, 10.1617/s11527-010-9686-5, DOI 10.1617/S11527-010-9686-5]
  • [10] Additivity effects in the rheology of fresh concrete containing water-reducing admixtures
    Banfill, P. F. G.
    [J]. CONSTRUCTION AND BUILDING MATERIALS, 2011, 25 (06) : 2955 - 2960