Quadratic Chabauty for modular curves: algorithms and examples

被引:5
作者
Balakrishnan, Jennifer S. [1 ]
Dogra, Netan [2 ]
Mueller, J. Steffen [3 ]
Tuitman, Jan
Vonk, Jan [4 ]
机构
[1] Boston Univ, Dept Math & Stat, 665 Commonwealth Ave, Boston, MA 02215 USA
[2] Kings Coll London, Dept Math, London WC2R 2LS, England
[3] Univ Groningen, Bernoulli Inst, Nijenborgh 9, NL-9747 AG Groningen, Netherlands
[4] Leiden Univ, Math Inst, Niels Bohrweg 1, NL-2333 CA Leiden, Netherlands
关键词
p-adic heights; Diophantine equations; modular curves; non-abelian Chabauty; rational points; RATIONAL-POINTS; ELLIPTIC-CURVES; VARIETIES; JACOBIANS; HEIGHTS; MAP;
D O I
10.1112/S0010437X23007170
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe how the quadratic Chabauty method may be applied to determine the set of rational points on modular curves of genus g > 1 whose Jacobians have Mordell-Weil rank g. This extends our previous work on the split Cartan curve of level 13 and allows us to consider modular curves that may have few known rational points or non-trivial local height contributions at primes of bad reduction. We illustrate our algorithms with a number of examples where we determine the set of rational points on several modular curves of genus 2 and 3: this includes Atkin-Lehner quotients X-0(+) (N) of prime level N, the curve XS4 (13), as well as a few other curves relevant to Mazur's Program B. We also compute the set of rational points on the genus 6 non-split Cartan modular curve X-ns(+)(17).
引用
收藏
页码:1111 / 1152
页数:43
相关论文
共 67 条
  • [1] Rational points on hyperelliptic Atkin-Lehner quotients of modular curves and their coverings
    Adzaga, Nikola
    Chidambaram, Shiva
    Keller, Timo
    Padurariu, Oana
    [J]. RESEARCH IN NUMBER THEORY, 2022, 8 (04)
  • [2] Adzaga N, 2021, Arxiv, DOI arXiv:2105.04811
  • [3] Betts LA, 2020, Arxiv, DOI arXiv:1909.05734
  • [4] Rational points on X0+(125)
    Arul, Vishal
    Mueller, J. Steffen
    [J]. EXPOSITIONES MATHEMATICAE, 2023, 41 (03) : 709 - 717
  • [5] Balakrishnan J.S, 2021, ERRATA COMPUTING LOC
  • [6] Balakrishnan J. S., 2021, INT MATH RES NOTICES, V2021, P11923, DOI DOI 10.1093/imrn/rnz362
  • [7] Balakrishnan J. S., 2021, PROGR MATH, V338, P31, DOI DOI 10.1007/978-3-030-65203-6_2
  • [8] Explicit quadratic Chabauty over number fields
    Balakrishnan, Jennifer S.
    Besser, Amnon
    Bianchi, Francesca
    Mueller, J. Steffen
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2021, 243 (01) : 185 - 232
  • [9] EXPLICIT COLEMAN INTEGRATION FOR CURVES
    Balakrishnan, Jennifer S.
    Tuitman, Jan
    [J]. MATHEMATICS OF COMPUTATION, 2020, 89 (326) : 2965 - 2984
  • [10] Explicit Chabauty-Kim for the split Cartan modular curve of level 13
    Balakrishnan, Jennifer S.
    Dogra, Netan
    Muller, J. Steffen
    Tuitman, Jan
    Vonk, Jan
    [J]. ANNALS OF MATHEMATICS, 2019, 189 (03) : 885 - 944