Application of a Multispectral UAS to Assess the Cover and Biomass of the Invasive Dune Species Carpobrotus edulis

被引:5
作者
Meyer, Manuel de Figueiredo [1 ]
Goncalves, Jose Alberto [1 ,2 ]
Cunha, Jacinto Fernando Ribeiro [1 ,3 ]
Ramos, Sandra Cristina da Costa e Silva [1 ]
Bio, Ana Maria Ferreira [1 ]
机构
[1] Univ Porto, Interdisciplinary Ctr Marine & Environm Res CIIMAR, P-4099002 Porto, Portugal
[2] Univ Porto, Fac Sci, Dept Geosci Environm & Spatial Planning, P-4169007 Porto, Portugal
[3] Univ Tras os Montes & Alto Douro, Ctr Res & Technol Agroenvironm & Biol Sci CITAB, P-5000801 Vila Real, Portugal
关键词
multispectral images; unoccupied aircraft systems; invasive species; vegetation indices; above-ground biomass; QGIS; VEGETATION INDEXES; SYSTEM; PREDICTION; RGB;
D O I
10.3390/rs15092411
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Remote sensing can support dune ecosystem conservation. Unoccupied Aircraft Systems (UAS) equipped with multispectral cameras can provide information for identifying different vegetation species, including Carpobrotus edulis-one of the most prominent alien species in Portuguese dune ecosystems. This work investigates the use of multispectral UAS for C. edulis identification and biomass estimation. A UAS with a five-band multispectral camera was used to capture images from the sand dunes of the Cavado River spit. Simultaneously, field samples of C. edulis were collected for laboratorial quantification of biomass through Dry Weight (DW). Five supervised classification algorithms were tested to estimate the total area of C. edulis, with the Random Forest algorithm achieving the best results (C. edulis Producer Accuracy (PA) = 0.91, C. edulis User Accuracy (UA) = 0.80, kappa = 0.87, Overall Accuracy (OA) = 0.89). Sixteen vegetation indices (VIs) were assessed to estimate the Above-Ground Biomass (AGB) of C. edulis, using three regression models to correlate the sample areas VI and DW. An exponential regression model of the Renormalized Difference Vegetation Index (RDVI) presented the best fit for C. edulis DW (R-2 = 0.86; p-value < 0.05; normalised root mean square error (NRMSE) = 0.09). This result was later used to estimate the total AGB in the area, which can be used for monitoring and management plans-namely, removal campaigns.
引用
收藏
页数:16
相关论文
共 67 条
[31]   ATMOSPHERICALLY RESISTANT VEGETATION INDEX (ARVI) FOR EOS-MODIS [J].
KAUFMAN, YJ ;
TANRE, D .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1992, 30 (02) :261-270
[32]   Geospatial Approaches to Monitoring the Spread of Invasive Species of Solidago spp. [J].
Koco, Stefan ;
Dubravska, Anna ;
Vilcek, Jozef ;
Grulova, Daniela .
REMOTE SENSING, 2021, 13 (23)
[33]   THE SPECTRAL IMAGE-PROCESSING SYSTEM (SIPS) - INTERACTIVE VISUALIZATION AND ANALYSIS OF IMAGING SPECTROMETER DATA [J].
KRUSE, FA ;
LEFKOFF, AB ;
BOARDMAN, JW ;
HEIDEBRECHT, KB ;
SHAPIRO, AT ;
BARLOON, PJ ;
GOETZ, AFH .
REMOTE SENSING OF ENVIRONMENT, 1993, 44 (2-3) :145-163
[34]   Classification of Atlantic Coastal Sand Dune Vegetation Using In Situ, UAV, and Airborne Hyperspectral Data [J].
Laporte-Fauret, Quentin ;
Lubac, Bertrand ;
Castelle, Bruno ;
Michalet, Richard ;
Marieu, Vincent ;
Bombrun, Lionel ;
Launeau, Patrick ;
Giraud, Manuel ;
Normandin, Cassandra ;
Rosebery, David .
REMOTE SENSING, 2020, 12 (14)
[35]   Low-Cost UAV for High-Resolution and Large-Scale Coastal Dune Change Monitoring Using Photogrammetry [J].
Laporte-Fauret, Quentin ;
Marieu, Vincent ;
Castelle, Bruno ;
Michalet, Richard ;
Bujan, Stephane ;
Rosebery, David .
JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2019, 7 (03)
[36]   Above-ground biomass estimation and yield prediction in potato by using UAV-based RGB and hyperspectral imaging [J].
Li, Bo ;
Xu, Xiangming ;
Zhang, Li ;
Han, Jiwan ;
Bian, Chunsong ;
Li, Guangcun ;
Liu, Jiangang ;
Jin, Liping .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2020, 162 :161-172
[37]   Mapping Vegetation at Species Level with High-Resolution Multispectral and Lidar Data Over a Large Spatial Area: A Case Study with Kudzu [J].
Liang, Wanwan ;
Abidi, Mongi ;
Carrasco, Luis ;
McNelis, Jack ;
Tran, Liem ;
Li, Yingkui ;
Grant, Jerome .
REMOTE SENSING, 2020, 12 (04)
[38]   How canopy shadow affects invasive plant species classification in high spatial resolution remote sensing [J].
Lopatin, Javier ;
Dolos, Klara ;
Kattenborn, Teja ;
Fassnacht, Fabian E. .
REMOTE SENSING IN ECOLOGY AND CONSERVATION, 2019, 5 (04) :302-317
[39]   Proximal NDVI derived phenology improves in-season predictions of wheat quantity and quality [J].
Magney, Troy S. ;
Eitel, Jan U. H. ;
Huggins, David R. ;
Vierling, Lee A. .
AGRICULTURAL AND FOREST METEOROLOGY, 2016, 217 :46-60
[40]  
Mallmann CL, 2020, 2020 IEEE LATIN AMERICAN GRSS & ISPRS REMOTE SENSING CONFERENCE (LAGIRS), P66, DOI 10.1109/LAGIRS48042.2020.9165598