The challenges of integrating explainable artificial intelligence into GeoAI

被引:26
作者
Xing, Jin [1 ]
Sieber, Renee [2 ,3 ]
机构
[1] TD Bank Grp, Toronto, ON, Canada
[2] McGill Univ, Bieler Sch Environm, Dept Geog, Montreal, PQ, Canada
[3] McGill Univ, Bieler Sch Environm, Dept Geog, Montreal, PQ H3A 0B9, Canada
关键词
NEURAL-NETWORKS; KNOWLEDGE; EXPLANATIONS; SCALE; GRAPH; XAI;
D O I
10.1111/tgis.13045
中图分类号
P9 [自然地理学]; K9 [地理];
学科分类号
0705 ; 070501 ;
摘要
Although explainable artificial intelligence (XAI) promises considerable progress in glassboxing deep learning models, there are challenges in applying XAI to geospatial artificial intelligence (GeoAI), specifically geospatial deep neural networks (DNNs). We summarize these as three major challenges, related generally to XAI computation, to GeoAI and geographic data handling, and to geosocial issues. XAI computation includes the difficulty of selecting reference data/models and the shortcomings of attributing explanatory power to gradients, as well as the difficulty in accommodating geographic scale, geovisualization, and underlying geographic data structures. Geosocial challenges encompass the limitations of knowledge scope-semantics and ontologies-in the explanation of GeoAI as well as the lack of integrating non-technical aspects in XAI, including processes that are not amenable to XAI. We illustrate these issues with a land use classification case study.
引用
收藏
页码:626 / 645
页数:20
相关论文
共 114 条
[11]   Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI [J].
Barredo Arrieta, Alejandro ;
Diaz-Rodriguez, Natalia ;
Del Ser, Javier ;
Bennetot, Adrien ;
Tabik, Siham ;
Barbado, Alberto ;
Garcia, Salvador ;
Gil-Lopez, Sergio ;
Molina, Daniel ;
Benjamins, Richard ;
Chatila, Raja ;
Herrera, Francisco .
INFORMATION FUSION, 2020, 58 :82-115
[12]   Twitter for disaster relief through sentiment analysis for COVID-19 and natural hazard crises [J].
Behl, Shivam ;
Rao, Aman ;
Aggarwal, Sahil ;
Chadha, Sakshi ;
Pannu, H. S. .
INTERNATIONAL JOURNAL OF DISASTER RISK REDUCTION, 2021, 55
[13]  
Belaid M. K., 2022, Do we need another explainable ai method? Toward unifying post-hoc xai evaluation methods into an interactive and multi-dimensional benchmark
[14]  
Bengio Yoshua, 2012, Neural Networks: Tricks of the Trade. Second Edition: LNCS 7700, P437, DOI 10.1007/978-3-642-35289-8_26
[15]   On the integration of symbolic and sub-symbolic techniques for XAI: A survey [J].
Calegari, Roberta ;
Ciatto, Giovanni ;
Omicini, Andrea .
INTELLIGENZA ARTIFICIALE, 2020, 14 (01) :7-32
[16]   Learning Graph-Based Geographical Latent Representation for Point-of-Interest Recommendation [J].
Chang, Buru ;
Jang, Gwanghoon ;
Kim, Seoyoon ;
Kang, Jaewoo .
CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, :135-144
[17]   Grad-CAM plus plus : Generalized Gradient-based Visual Explanations for Deep Convolutional Networks [J].
Chattopadhay, Aditya ;
Sarkar, Anirban ;
Howlader, Prantik ;
Balasubramanian, Vineeth N. .
2018 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2018), 2018, :839-847
[18]   An Empirical Study of Adversarial Examples on Remote Sensing Image Scene Classification [J].
Chen, Li ;
Xu, Zewei ;
Li, Qi ;
Peng, Jian ;
Wang, Shaowen ;
Li, Haifeng .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (09) :7419-7433
[19]   Coexisting attractors, chaos control and synchronization in a self-exciting homopolar dynamo system [J].
Chen, Xingrong ;
Xiao, Li ;
Kingni, Sifeu Takougang ;
Moroz, Irene ;
Wei, Zhouchao ;
Jahanshahi, Hadi .
INTERNATIONAL JOURNAL OF INTELLIGENT COMPUTING AND CYBERNETICS, 2020, 13 (02) :167-179
[20]   Explainable artificial intelligence (XAI) detects wildfire occurrence in the Mediterranean countries of Southern Europe [J].
Cilli, Roberto ;
Elia, Mario ;
D'Este, Marina ;
Giannico, Vincenzo ;
Amoroso, Nicola ;
Lombardi, Angela ;
Pantaleo, Ester ;
Monaco, Alfonso ;
Sanesi, Giovanni ;
Tangaro, Sabina ;
Bellotti, Roberto ;
Lafortezza, Raffaele .
SCIENTIFIC REPORTS, 2022, 12 (01)