A Dynamic Trust-Related Attack Detection Model for IoT Devices and Services Based on the Deep Long Short-Term Memory Technique

被引:6
|
作者
Alghofaili, Yara [1 ]
Rassam, Murad A. [1 ,2 ]
机构
[1] Qassim Univ, Coll Comp, Dept Informat Technol, Qasim 51452, Saudi Arabia
[2] Taiz Univ, Fac Engn & Informat Technol, Taizi 6803, Yemen
关键词
Internet of Things; trust management; trust-related attacks; deep learning; long short-term memory; INTERNET; MANAGEMENT; THINGS; CHALLENGES; SECURITY;
D O I
10.3390/s23083814
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The integration of the cloud and Internet of Things (IoT) technology has resulted in a significant rise in futuristic technology that ensures the long-term development of IoT applications, such as intelligent transportation, smart cities, smart healthcare, and other applications. The explosive growth of these technologies has contributed to a significant rise in threats with catastrophic and severe consequences. These consequences affect IoT adoption for both users and industry owners. Trust-based attacks are the primary selected weapon for malicious purposes in the IoT context, either through leveraging established vulnerabilities to act as trusted devices or by utilizing specific features of emerging technologies (i.e., heterogeneity, dynamic nature, and a large number of linked objects). Consequently, developing more efficient trust management techniques for IoT services has become urgent in this community. Trust management is regarded as a viable solution for IoT trust problems. Such a solution has been used in the last few years to improve security, aid decision-making processes, detect suspicious behavior, isolate suspicious objects, and redirect functionality to trusted zones. However, these solutions remain ineffective when dealing with large amounts of data and constantly changing behaviors. As a result, this paper proposes a dynamic trust-related attack detection model for IoT devices and services based on the deep long short-term memory (LSTM) technique. The proposed model aims to identify the untrusted entities in IoT services and isolate untrusted devices. The effectiveness of the proposed model is evaluated using different data samples with different sizes. The experimental results showed that the proposed model obtained a 99.87% and 99.76% accuracy and F-measure, respectively, in the normal situation, without considering trust-related attacks. Furthermore, the model effectively detected trust-related attacks, achieving a 99.28% and 99.28% accuracy and F-measure, respectively.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] Long Short-Term Memory based Operation Log Anomaly Detection
    Vinayakumar, R.
    Soman, K. P.
    Poornachandran, Prabaharan
    2017 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2017, : 236 - 242
  • [32] An intrusion detection approach based on incremental long short-term memory
    Hanxun Zhou
    Longyu Kang
    Hong Pan
    Guo Wei
    Yong Feng
    International Journal of Information Security, 2023, 22 : 433 - 446
  • [33] Lane Position Detection Based on Long Short-Term Memory (LSTM)
    Yang, Wei
    Zhang, Xiang
    Lei, Qian
    Shen, Dengye
    Xiao, Ping
    Huang, Yu
    SENSORS, 2020, 20 (11)
  • [34] A forecast model of short-term wind speed based on the attention mechanism and long short-term memory
    Xing, Wang
    Qi-liang, Wu
    Gui-rong, Tan
    Dai-li, Qian
    Ke, Zhou
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (15) : 45603 - 45623
  • [35] A forecast model of short-term wind speed based on the attention mechanism and long short-term memory
    Wang Xing
    Wu Qi-liang
    Tan Gui-rong
    Qian Dai-li
    Zhou Ke
    Multimedia Tools and Applications, 2024, 83 : 45603 - 45623
  • [36] A deep learning approach based on sparse autoencoder with long short-term memory for network intrusion detection
    Kherlenchimeg Z.
    Nakaya N.
    IEEJ Transactions on Electronics, Information and Systems, 2020, 140 (06) : 592 - 599
  • [37] Deep Convolutional Network with Long Short-Term Memory Layers for Dynamic Gesture Recognition
    Siriak, Rostyslav
    Skarga-Bandurova, Inna
    Boltov, Yehor
    PROCEEDINGS OF THE 2019 10TH IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT DATA ACQUISITION AND ADVANCED COMPUTING SYSTEMS - TECHNOLOGY AND APPLICATIONS (IDAACS), VOL. 1, 2019, : 158 - 162
  • [38] Long Short-Term Memory-based Deep Learning Model for COVID-19 Detection using Coughing Sound
    Malviya A.
    Dixit R.
    Shukla A.
    Kushwaha N.
    SN Computer Science, 4 (5)
  • [39] Prediction of solar cycle 25 using deep learning based long short-term memory forecasting technique
    Prasad, Amrita
    Roy, Soumya
    Sarkar, Arindam
    Panja, Subhash Chandra
    Patra, Sankar Narayan
    ADVANCES IN SPACE RESEARCH, 2022, 69 (01) : 798 - 813
  • [40] Credit Risk Assessment Based on Long Short-Term Memory Model
    Zhang, Yishen
    Wang, Dong
    Chen, Yuehui
    Shang, Huijie
    Tian, Qi
    INTELLIGENT COMPUTING THEORIES AND APPLICATION, ICIC 2017, PT II, 2017, 10362 : 700 - 712